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The book deals with the basic aspects of the statistical theori

of detecting radar signals and measuring their parameters in the pre-

sence of Gaussian interferences, gives the theory and the principles

of designing devices with optimum detection and measuring as well as

a great number of examples permitting the reader to familiarize him- V

self more quickly with the main problems of the theory and its applica- ,

tions.

The book is intended to serve the students of advanced courses of

radio engineering colleges, but may also be useful to aspirants and

engineers of similar lines of specialization.
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FOREWORD

An increasing use of statistical methods can be observed in the

development of contemporary radio engineering and radar. In particular,

problems connected with the random action of weak signals and interfer-

ences on the receiver cannot be solved without having recourse to

these methods. It is, therefore, comparatively long ago that statisti-

cal analysis was introduced into the theory of receivers to which the

fundamental works of the Soviet scientists V.I. Siforov and V.I. Buni-

movich contributed to a considerable extent.

In the last 10-_0 years, however, the range of application of sta-

tistical methods has been expanded substantially.

Above all, besides the statistical analysis of concrete variants

of the signal receiving and processing circuits, the investigation of

the mathematical principles and qualitative characteristics of optimum

processing is widespread. In the past, the choice of the concrete pro-

cessing circuit was connected with a statistical analysis of the indi-

vidual variants of the circuits or with the choice of optimum values of

the individual variants of the circuits or with the choice of optimum

values of the individual receiver parameters so that the problem whe-

ther the circuit could be designed such as to yield essentially better

characteristics always remained unsolved. It was the fundamental work

of V.A. Kotel'nikov [1] (1946) which, for the first time made it possi-

ble to obtain an idea of the optimum mathematical operations to be ap-

plied to the function of time corresponding to oscillations fed to the

receiver, in order to obtain the best result in the sense of statistics.

-1-
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In the past one could only speak of the qualitative characteristics one

or another receiver circuit possessed whereas in V.A. Kotel'nikov's

work the potential interference suppression wai determined, for the

first time-; it is characterized by the best qualitative radio receiver

characteristics which can be obtained for given signal and interference

characteristics.

Secondly, together with the introduction of optimum processing as

a standard in the statistical analysis of given circuits, statistical

synthesis of circuits exactly or approximately c orresponding to the

mathematical operations of optimum processing be'gins to be made use of.
J-.

Previously, before the work of B.A. Kotel'nikov, and even during the

following 5-10 years after his publication real circuits of signal pro-

cessing were designed intuitively on the basis of physical considera-

tions and engineering practice. This situation was also due to the

fact that the connections between the mathematical operations of opti-

mum processing and the processes occurring in real circuits had not

yet been revealed and realized. At present, we are quite able to ap-

proach the problem of a receiver as a specialized computer carrying

out exactly or approximately the linear and nonlinear operations of op-

timum processing.

Furthermore, there is no longer a sharp boundary between the pro-

cessing of radar signals in circuits of radio receiving and indicating

devices, in automation circuits, digital and analog computing techni-

que or, otherwise, between intrareceiver, primary and secondary proces-

sing of radar signals. Ali these aspects of processing are character-

ized by a combination of mathematical operations which have to be

close to the optimum. In radar, such an optimization is particularly

important both in the detection of reflected signals and in measuring

their parameters. Probably, also operations immediately applied to os-

FTD-HT-66-256/l+2
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cillations of the electromagnetic field which act on the receiving an-
tennas of radars will soon be considered to be the initial links of a
single processing circuit. 

ji.
Thirdly, besides the determination of the qualitative characteris-

I

ties of optimum processing for a given signal, a comparative analysis 

of the results of optimum (and sometimes also not quite optimum) pro-

cessing of different signals begins to be made use of in order that the A

most advantageous among them may be found out. This fact implies that

the development of the statistical theory of optimum processing inevi-

tably affects the domain of transmission and coding of eitted signals,

and, in particular, of sounding signals in radar.

It was precisely the statistical theory of detection and measure-

ment that helped to find ways of overcoming an essential contradiction

which in the past had arisen between two important demands usually

made on the designer of a pulsed radar. The first demand is to increase

the range of action at the expense of the energy of the station if the 4
peak power of the electrovacuum devices and the waveguide tracts is 4"

limited. This is connected with an increase of the energy of the sound-

ing radio pulses at the expense of an increase of their duration. The

second demand is to have a high longitudinal resolving power. For sim-

ple pulsed signals (without additional frequency or phase modulations

or the like) this fact gives rise to a reduction in the duration of the

sounding radio pulses, under conditions of processing which ae close

to the optimum.

The elimination of the contradiction is achieved at the expense.

of golng over to complex sounding radio signals with an additi6nal mod-

ulation within the limits of the pulse. Since the product of a frequen-

cy band and the duration of such signals is essentially greater than

unity, they are called broad-banded. Broad-banded signals are able to

F3 -
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ensure high longitudinal resolving power without destroying the opti-

mrlity0 of their processing in receiving. It turns out that a received

broad-band radio pulse with given parameters (correct as to amplitude

and initial phase) is compressed in time if it passes through the fil-

ter which is optimum for it. The longitudinal resolving power of the

pulsed radar and its pulse volume are in this case determined by the

duration of the compressed radio pulse whose duration is essentially

shorter than that of the sounding signal. This fact explains the great

attention paid in the last few years to broad-band radio signals and

their compression in time, in foreign literature. In the Soviet Union,

the principles of compression had been worked out independently and be-

fore the corresponding foreign publications had appeared (see, e.g.,

[11).

The constructive value of the statistical theory of radar had not

been realized at once. One of the pioneers of this theory was the

English scientist F.M. Woodward, who had contributed to its develop-

ment in a high degree. But also he stated in 1953 that the value of

this theory mainly lay in the fact that it verified experimental re-

sults, already well-known.* Developments showed that Woodward's judgment

was un necessarily pessimistic.

The application of the new radiosignals should change not only the

aspect of radio receiving, but also that of radio transmitting sets.

Onze again this &.ttests to the fact that the domains of application of

the statistical tneory of detection and measurement have outgrown the

narrow compass of only one course on radio receiving sets held in high-

er technical schools.

e Consequently, when training specialists in radar it is useful to

set forth the statistical theory of detecting and measuring the radar

signal parameters as the basis of a separate course on the theoretical

- - --
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fundamentals of radar (or, at least, of applied information theory).

In the last few years Soviet scientists such as L.A. Vaynshteyn

and V.D. Zubakov [5], S.Ye. Fal'kovich [6], L.S. Gutkin [7] and others

have published several monographs on problems of the statistical theory

of detection and measurement. The first part of a serious collective

work [10] edited by G.P. Tartakovskiy was published. The following

monographs were published in trans~ation: the short work by F.M. Wood-

ward [4] which has, however, already played a considerable role in

the development of radar theory, the voluminous theoretical monograph

by D. Middleton [8], the interesting work by K. Helstrom [11] which

was published recently.

Nevertheless, means of instruction reflecting both the experience

of scientific and pedagogic work in the Higher Technical School are

missing. Besides, the technical trend of the theoretical investigations

is not sufficiently emphasized in the published works.

The present book is intended to fill this gap.

The book was prepared as a means of instruction and reflects a

five-year experience of teaching in Higher Technical Schools where the

extent of the material set forth was gradually enlarged.

Having in mind the purpose of the book, the authors endeavored to

explain the theoretical results of greatest technological importance,

making use, as far as possible, of rather simple mathematical tools.

The book deals with the fundamental aspects of the statistical

theory of detecting radar signals and measuring their parameters in the

presence of Gaussian interferences; it explains the principles of de-

sign and the theory of optimum detection and measuring devices, and

gives a great number of examples enabling the reader to familiarize

himself with the possible applications of theory. The applications o'

statistical theory to measuring angular coordinates are not treated in

-5-
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the present work. Although the book is intended for students of advan-

ced courses in radio engineering institutions, it i.ay be useful for as-

'pirants and engineers of similar lines of specialization.

i The authors express their indebtedness to A.Ye. Basharinov, N.I.

Kravchenko, G.A. Kostin, I.N. Busygin and Ye.P. Lebedev for several

valuable remarks.

Manu-
script
Page [Footnotes]

5 At the end of the fifth chapter of Woodward's book [1] we
read: "The experimenter may feel inclined to think that the
theory borders on triviality since it shows what to do,
whereas it has been well-known for some time. Such a criti-

- cism misses the mark. Investigation shows some theoretical
4- ideal not applying to experience and just the fact that it

confirms the experimental conclusions provides the highest
4 satisfaction in it.

- 6



Chapter 1

BASIC CONCEPTS OF THE THEORY OF RADAR SIGNAL DETECTION AND MEASURING

THEIR PARAMETERS

§ 1.1. QUALITATIVE CHARACTERISTICS OF RADAR DETECTION

The problem of radar boils down to the obtaining of reliable in-

formation on the distribution of targets in space and on their posi-

tion data. This information is contained in the radio signals reflec-

ted by the targets.

Besides useful signals inte7ferences act on the input end of the

radar receiver. They give rise to errors in the detection of targets

and in the measurement of their coordinates. Otlher phenomena of ran-

dom character cause the same result, e.g., fluctuations of secondary

radiation, as a result of which the signals are abruptly weakened for

isolated instants of time.

Owing to the random character of the signals and interferences

the performance of the radar is analyzed by statistical methods and

its qualitative characteristics are specified by statistical parame-

ters.

To start with, we shall deal with the qualitative characteristics

of radar detection.

The result of the detection process must be the solution to the

problem as to whether or not a target is present in the vicinity of an

arbitrary point of space within the coverage of the radar. The solu-

tion may be adopted under two mutually exclusive conditions:

condition A1 is "there is a target,"

- 7-



condition A0 is "there is no targeb."

p>,. ,It is implied that these conditions are unknown when the solution is

being worked out.

Owing to the interferences and fluctuations of the useful signal

two forms of solutions may correspond to each condition:

solution A* is "there is a target,"

solution A* is "there is no target,."

After the detection process has been completed, a third solution - "I

do not know" - must not exist. Let us pay attention to the fact that

the solutions A* and A* are designated in the same way as the condi-

tions, except for the addition of asterisks.

First, we shall consider the case where a target exists (condition

A,). If in this case the solution A* - "there is a target," is forth-

coming, one speaks of a correct detection. If under the same condition

the solution A* emerges - "there is no target," a target miss takes

place. Obviously, a target miss is a most undesirable error in detec-

tion.

Qualitative characteristics of detection under the condition of

an existing target are the corresponding conditional probabilities of

correct detection

D = P(A.LA,) (!)

and of target miss

b=P(A.*jA,). (2)

Since the solutions i. and A* are incompatible random events and

correspond to the same condition A1 of an existing target, we have

b+D=1. (3)

Thus, it is always possible to find the conditional probability

of D of missing the target if the conditional probability of correct

*detection D is known. If, e.g., for one scanning cycle D 0.75, the

-8-
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conditional probability of missing is D = 0.25. This implies that the

radar equipment guarantees, on the average, detection of target in 75%

of the cases; in about 25% of the cases the target is not detected.

Let us turn to the case where no target exists (condition A.). Un-

der this condition, nondetection is correct, i.e., the solution A* -

"there is no target." if the solution A* - "there is a target," emer-

ges as the result of the action of interferences, one speaks of a

false alarm.

False alarm is a very undesirable error even if, in the following

processing,.the false information will be screened. False information

uselessly burdens the system of radar data, processing. It may complete-

ly disturb the passage of useful information. In several cases, the

fact cf the false alarm may of itself also give rise to extremely un-

desirable consequences.

Qualitative characteristics of detection under the condition of a

nonexistent target are the conditional probabilities of false alarm

F=P(A IA,) (4)

and of correct nondetection

F=p(A . (5)

Since the incompatible solutions A* and A* correspond to the same

condition A0 , we have

F+F= 1. (6)

if the conditional probability of false alarm F is known, we can al-

ways obtain the conditional probability of correct nondete tion. If,

e..., considering some element of space, F = 10- I then = 1 - 10

This implies that the radar equipment gives, on the average, one false

4
alarm in 10 observations c the given space element in the case of

nonexisting targets, and in 9999 cases it does not give a false alarm.

We note that per time unit a radar usually scans a great number m

-9-



of resolvable space elements. If for a space element F << 1/m, the pro-

bability of false alarm P for a volume of m elements grows in propor-;

tlon to m. The probability of correct detection is, in fact, Fm =

. (F)m whence

F,--1 -(I --FP), 1 -(I -mF)--nF.

1 i This is also the reason why, -in the theory of radar signal detec-

tion, one usually works with very low values of admissible probability

of false alarm Fdop = Fm dop/m for each of the resolvable dements.

On the other hand, one tries to make the probability of correct

detection D as high as possible. The latter is particularly difficult

to achieve if the target is at a considerable distance and the energy

of the reflected signals is extremely low. The boundary of the zone of

detection of an individual radar is, therefore, given by the magnitude

of the distance at which the probability of correct detection per one

scanning cycle is not less than some admissible value D dop . Usually,

' one chooses Ddp= (0.05-0.5), i.e., D =o (0.95-0.5). In some cases,

j the demands made on a radar may be increased abruptly, i.e., sometimes

chooses (0.01-0.0001), corresponding to Ddop = (0.99-0.9999

Thus, the conditional probabilities of correct detection D and

false alarm F are the basic qualitative characteristics of radar detec-
' I tion. At the limits of the detection zone, the requirements F < F

zone, requremets -dop'

N D > Ddop.

§1.2. QUALITATIVE CHARACTERISTICS OF RADAR MEASUREMENTS

The error in the determination of the quantity to be measured is

a criterion of the quality of the measurement carried out. The smaller

this error, the higher the quality of the measurements.

The errors of measurement are classed as gross blunders, constant

* and accidental errors. If particular measures are taken to eliminate

constant errors and gross blunders, the errors of measurement can be

- -



reduced to the accidental ones.

In measuring the radar signal parameters, the accidental errors

are due to the action of interferences on the input end of the receiv-

er, to signal fluctuations, but also to the random behavior of the

system of measurements itself.

Fig. 1.1 shows the typical curve of the probability density p(s)

characterizing the law of distribution of the accidental errors. From

this curve, the probability that the magnitude of the error will as-

sume a value within an arbitrary interval from s to s + 6s may be

found. The corresponding probability is equal to p(s)Ae and represen-

ted by the crosshatched area in Fig. 1.1. The total area between the

curve p(s) and the axis of abscissas is

equal to unity since it is the probability

of a certain event which implies that the

• . ... error may assume any value between -co and

Fig. 1.1. Typical prob-ability density curve
pbility oacdenta e- It follows from the curve (Fig. 1.1)p(e) of accidental er-

rors. that great errors have a low probability,

but in individual measurements their possi-

bility is not excluded. The probability that the absolute value of the

error s is lower than so, is numerically equal to the crosshatched

area in Fig. 1.2.

f(1)

Fig. 1.3 shows the diagram of the function dependence T(so) =

= P(J j so). It follows from this diagram that if the value of s0 is

great enough the inequality Iji < so nas a probability close to unity,

i.e., is almost certain.

- 11 -



Usually,

1) the mean square deviation es k;

2) the probable (mean) error Ever

are considered to be statistical parameters characterizing the accur-

acy of the measurement. Sometimes other statistical parameters are

used as well. In particular, one speaks of the maximum error emaks. In

several cases, the mean value of the error modulus may be interesting.

For any law of distribution of the accidental errors p(s) the

mean square deviation of the measurements is determined from the rela-

tion

S(2)

The probable (mean) error Ever is found from the equation

P(IcI< .p)=P(iI> cae)=05, (3)

i~e., corresponds to that value of EO0 for which the crosshatche& area

in Fig. 1.2 is half of the total area below the curve p(s).

Fig. 1.2. Concerning the calcula- Fig. 1.3. Curve of probability
tion of the probability P0.6144 ',I ,,-T,,

The normal leoi or Gaussian law is the most usual law of acciden-

: tal error distribution:

-12 -
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to which the curves shown in Figs. 1.1-1.3 also correspond. In this

case,

P061<,)= ' f ed e

%_ (5),

where

Jdr 21 wtu

(U) e- dx (6)
~(6)

is the probability i'tegral.

It follows from a comparison of the formulas (3) and (5) that

Since ((u) = 0.5 and u 0.67 2/3, we have for the normal law

so that it is always possible to find the probable (mean) error if the

mean square deviation is known.

Often
.eano=: 

48,,o

is taken as the maximum error of the measurements.

In this case, we have for the normal law

P(fle k<l'NaI) - -- )-=0(8/3). 0,993;

i.e., the probability that the accidental error exceeds smaks is all

in all only 0.7%.

Thus, the distribution law of the accidental error gives the most

complete idea of its possible values. The mean square deviation,

which is connected to the probable (mean) and maximum errors by simple

relations, cau be considered the basic parameter characterizing the

- l -.
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accuracy of the measurements in the case of a normal law.

§1.3. THE CONCEPT OF THE MEAN RISK AND A CRITERION FOR THE MINIMUM
MEAN RISK

The system of radar information processing has to satisfy contra-

dictory demands.

In order to avoid a target miss, it is, e.g., desirable to solve

the problem as to whether it is really present even in the case the

signal from the target should be strongly distorted by interferences

and the existence of the target cannot be maintained with certainty.

Obviously, the probability of false alarm increases in this case.

Thus, we have tc make a reasonable compromise between the contra-

dictory factors by choosing a method of information processing which

is most favorable from the point of view of all possible conditions of

radar. Of course, the solution obtained in this case will not necessar-

ily be the best for any special condition of radar (existence of a tar-

get, ncnexistence of a target). It must be optimum on the average, sta-

tistically taking into account the probabilities with which all possi-

ble conditions of detection or measurement are distributed.

It is advantageous to make use of the concept of the mean risk

when studying such contradictiory situations. This concept allows us

to study the conditions of optimum detection of radar signals and

measuring their parameters in a uniform way and starting from suffi-

ciently general positions. It has a wider significance and can also be

applied to planning the exploitation of resources in political econ-

omy and to planning military operations. We shall explain the nature

of the concept of mean risk with the help of examples taken from the

domain of radar.

We shall use the term entirety of possible situations in order to

designate the entirety of conditions in radar and of the solutions

-14-
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adopted in this case.

The following situations are possiole . section:

1) situation A A0 (correct nondetection);

2) situation A*A0 (false alarm);

3) situation ASA1 (target is missed);

4) situation A A1 (correct detection).

Usually, any measurement is characterized by the fact that to the

measured quantity a some estimate a* is assigned which is somewhat dif-

ferent from it (on account of which an error s = a*- a is obtained).

In this case, the entirety of possible situations corresponds to the

entirety of different values of a and a*.

Each of the situations mentioned is characterized by its pi-obabil-

ity or probability density. In the case of detection we may speak of

the prohabilities of situations Pi(i = 1, 2, 3 4), the sum of which

is equal to unity:

p.+p,+p+p 4 =P(Ao, AJ+P(A, A)

4.P(4A,)+P(A;. A)= 1.()

When the parameters are measured, we speak of the probability density

of situations p(ca*, a), or the differential

dP ( ) =p(a, a) d)da,

where

ip (, x)da'd,= d =W (2)

To each possible situation we shall assign a certain error charge

according to the importance or value of this error. Let a greater (or,

at least, an equal), but not a smaller value of the error correspond

to a greater error. We shall agree upon considering this value equal

to zero for solutions without errors.

The assignment of values to the errors is an important stage of an-

- 15 -
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alysis and must take into account all considerations as to the prob-

lem to what extent )ne or another aspect of error is undesirable. In

many important cases, however, the rules of optimum processing prove

to be independent of the concrete way of assigning values to the errors.

Having in mind the random character of each situation we may as-

sert that also tlh.e error charge is a random quantity. Consequently,

we may speak of the mean charge or, equivalently, of the mean risk.

The mean risk is calculated according to the rules of finding the

mean vralue (the mathematical expectation value) of an arbitrary random

quantity. For the discrete case (detection) it is found from the form-

ula

(3)

where ri is the- charge for the ith situation; Pi is its probability.

For the continuous case (measurement) the mean risk is determined

by the equation

'6 ,L)wP(, ).

In the analysis of the detection process it is sufficient to as-

sign only two error values: the error value of false alarm

r(A;, ,A)=r,

and the error value of mising the target

a r(A,;, A,)=r,*.

Owing to the multiplication theorem of probabilities the corres-

ponding absolute probabilities will be

P(A;. A=P(A)P(A; IA,)=P(A,)F, (

P(A;I.A,)=P (A,)P(A 1A,)=P(A,)D.

In view of the fact that the charge for solutions without error

is put equal to zero, from Eq. (3) we obtain the expression for the

- 16 -
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mean risk of detection errors in the form

ri=rFFP(A)+r- D4P(A).(5

Comparing the different systems of pro-

cessing radar information we must give the pre-,

ference to that system for which the mean risk

is smallest. Thus, the optimum operating condi-

* £ tions can be found from the criterion of the

minimum mean risk. In particalar, for the op-

b timum system of detection the quantity calcu-

lated from formula (5) must have a: minimum.

In the analysis of the measuring process

we have to consider the error value to be a fu

C~ i function of two variables r(a*, a). Assuming

--* - (e.g., in range finding) that the value of an

error of measurement depends only on the dif-

Fig. 1.4. Possible Iference of the measured quantity and its esti-

error value func- mate a* - a = e, it is sufficient to set up a
tions. function r () of only one variable.

Fig. 1.4 shows the possible curves of er-

ror values r (e) as functions of values of the error s. Thus, the curve

r (e) = e2 (Fig. l.4a) corresponds to thq case in which the value of

the error is equal to the square of tne error. In this case, obviously,

i.e., the mean risk is equal to the square of the mean square devia-

tion, and the minimum of the mean risk corresponds to the minimum of

the mean square deviation.

The curve r (e) = Ijs (Fig. 1.4b) corresponds to the case in which

the value of the error is equal to the absolute value (modulus of the

error. In this case the mean risk is equal to the mean modulus of the

error

and the minimum of the mean risk corresponds to the minimum of the mean

error modulus.

The curve (Fig. 1.4c) corresponds to the case where

- 17 -
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In this case the mean risk is equal to the probability that the error

modulus exceeds so

IGn

• -- r(lp(ild,= s p(,)d,+ pla)di--P~ls>e,,

and the minimum of the mean risk reduces to the milimum of the proba-

bility that the error modulus exceeds the given qacnrity sO.

~Using the example of measurement analysis u_, can satisfy ourselves

of the fact that the criterion of the mean risk minimum may reduce to

any other well-known criterion, in particular, to the criterion of the

minimum of mean square deviation if the function of the error value is

* chosen appropriately.

jThis fact shows that the criterion of the mean risk minimum is

sufficiently general so that we may go over from it to simpler and more

special criteria.

The example of detection analysis may convince us of the same
I

fact. In particular, if we put . = rB = 1 in Eq. (5), the mean risk

will be equal to the total probability of the detection errors

=FP (A) + bP(A,).

In literature, the condition of this probability being a minimum is

called the criterion of the ideal observer. The criterion of mean risk

minimum (5) is more general than the criterion of the ideal observer,

sinceit permits us to allcw for the different significance of errors

of false alarm and missing the target.

If in Eq. (5) the substitution = 1 - D is carried out, we may

write
r= P(,) -(D- [A r P (AI, (6)

-18-
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where

Since r^P(A1 ) > 0, we find that the criterion of the mean risk minimumD

reduces to the criterion

D -F= max. (8).

Criterion (8) is called weight criterion. It provides for the de-

mand of raising the conditional probability of correct detection D and

lowering the conditional probability of false alarm F. in view of all

these demands we must try to increase the "weighted" difference D-

- F . The factor 10 which is termed a weighted factor depends on the

ratio of the error values of each kind and the probabilities of the

target being present or absent in the investigated part of space.

Comparing two systems of information processing the first of

which is optimum we may write
Don- It ou, > D'- 1F9.

Hence 4
Do.; D'+ I* (F.o, - F'),

i.e., for F' = Fopt

.., >, D,'. (9)

Relation (9) remains correct also in the case if F' < Fopt. Otherwise,

it may be rewritten in the form

DoKTD. (10)

This fact implies that the optimum system yields the lowest prob-

ability of missing amonG all systems for which the probability of false

alarm is not higher than for the optimum system. The given conditions

can be chosen to be an independent criterion for the optimality of the

system (the Neuman-Pearson criterion). The Neuman-Pearson criterion as

well as the criterion of the ideal observer may, thus, be considered

- 19 -



a consequence of the optimality criterion of the system.

Thus, the criterion of the mean risk minimum can be used in analy-

zing the contradictory conditions of detection and measurement of par-

ameters. The criterion of the mean risk minimum is a comparatively gen-

eral criterion. In the case of detection, e.g., it reduces to the

weight criterion, the Neuman-Pearson criterion and the criterion of

the ideal observer. When applied to parameter measuring it reduces, in

particular, to the criterion of minimum of mean square deviation.

§1.4. THE PROBLEM OF OPTIMUM DETECTION OF RADAR SIGNALS AND MEASURING
THEIR PARAMETERS

The considerations set forth in the preceding sections are suffi-

ciently general and can be applied to analyzing any radar information

processing whether immediately entering the input end of the radar or

also partly subject to processing.

The analysis of optimum radar information processing is most in-

teresting if information immediately enters the input end of the radar

since partial nonoptimum processing may give rise to irreversible los-

ses of information.

In the following we shall, therefore, carry out an analysis of

the optimum processing of high-frequency oscillations entering the in-

put end of the radar receiver. Taking into account the specific char-

acter of a radar's work these oscillations can be represented in the

form

y<,,,+A~f c,,,.. , ,..)(1

where

n(t) is the oscillation of the interference acting on the input

end of the receiver;

~A is a discrete random parameter that assumes only two values:

A0 = 0 and A1 = 1, corresponding to the conditions of absence or pre-

- 20 -
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sence of a useful signal from the target;

x(t, al' 2 " l' a2' is a given function of time and the

parameters al, "'' ... The shape of this function depends,

in particular, on the law of modulation of the sounding signal, the

method of space scanning, etc.;

all 2 , "" - are random measurable parameters of the radar sig-

nal. The time delay proportional to the distance from the target and

the Doppler frequency shift proportional to the radial velocity of the

target may be among them;

l 2 "" -- are random signal parameters whose measurement is

not of substantial interest. Among them there are: the amplitude of the

signal, the total initial phase of the received signal or the whole of

the random initial phases of the pulse oscillations for incoherent

emission, etc.

The statistical characteristics of random parameters and process-

es are considered to be given, i.e., precisely:

- the statistics of interference n(t);

- the pre-expei'ience (a priori) probabilities P(A1 ) and P(A0.)

= 1 - P(A1 ) of the values A1 and A0 of the discrete parameter A (in de-

tection);

- the a-priori probability density p(alI, a2 1 ... I P 2' P2 ')

of the values of measurable and immeasurable parameters; usually, but

not always, p(I a2 ', "' . 1' I 2' " '') = P(aI, a 2, ...)p( 1  2' "'' )

In the first place, it is necessary to solve the sta,;istical prob-

lem of detection with the help of the adopted function y(t) and the

preexperience (a priori) data. This implies that for the quantity A

estimates A* (0 or 1) must be chosen such as to yield the minimum of

the mean risk (or, equivalently, the maximum of the weight criterion).
In doing so, the law of optimum processing must be established, i.e.,

- 21 -
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the entirety of mathematical rules by which the most efficient answer

I to the problem whether a useful signal is present or not can be given

for each choice of the function y(t). Finally, we have to regard the

qualitative characteristics of optimum mathematical processing in de-

tection and to consider the methods of its technical realization.

The solution of the statistical problem of measurement will con-

sist in the choice of estimates a*, a* ... for the measurable param-1' 2'

eters al, a2, ... , of which we only know the pre-experience (a priori)

probability density p(al, a2 ' ... ). These estinftes must be optimum

from tfie point of view of mean risk minimum. For a square value func-

tior (which will be given in the following) the latter demand is equiv-

alent to that of the minimum of the mean square deviation. As in the

case of detection, we have to regard the qualitative characteristics

of optimum processing in the measurments and to consider the methods

of realizing it technically.

Before we enter the analysis of the posed problems for compar-

tively general and practically important cases, we shall consider ex-

tremely simple examples of statistical approach to problems of detec-

tion and measurement.

§1.5'. AN EXAMPLE OF ONE-DLvMENSIONAL OPTMI4M DETECTION

Let us consider an indicating instrument whose indication is char-

acterized by the number I (Fig. 1.5). Either the sum of the signal volt-

age x and of that of the interference n, such that
agex n,

~(1)

or the voltage of the interference alone

v=n. (2)

enter the instrument. During the time of observation the quantities

x and n do not change. The expected value of the signal x is exactly

known.

-22 -
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The law of distribution of the random quantity n is also assumed

to be given: we shall consider it to be a normal one (Gaussian) in the

following consideration. According to the measured value of y it is

necessary to choose the optimum solution which of the two cases (1) or

(2) menticned is taking place.

of a more general detection problem (§1.4). Its peculiar feature lies

in the fact that instead of the functions of time y(t), n(t) and x(t,

al, a 2 ' -' l. I2' P ) the corresponding one-dimensional quantities

are considered: the random quantities y and n and the nonrandom quanti-

ty x. In contrast to the general case the quantity x does not depend

on parameters.

Instead,.of (1) and (2) we may write one expression

YnA.(3)

for the sake of unif,,rmity in denotation, in which the discrete param-

eter A is equal to 0 r 1. Thus, the problem reduces to an estimation

of A*, according to the .,asured value of y, an estimtion which must

be optimum from the point of view of the criterion of the minimum mean

risk or the weight criterion equivalent to it.

Fig. 1.6a shows the probability densities of the random quantity

2 under the conditions of the signal absent A =

A0 =0 or present A = 1 =1:

pI' iA.) =p3 (g), (14)
p (VIAJ)-- pun (y).

The subscripts "p" and "sp,". here, indicate that

Fig. 1.5. Very
simple indica-the mathematical expressions pp(y) and p(y) are
ri~ng instrument, different whether there is the intereference alone

or a signal with interference. The curve psp(Y )

is shifted by a constant amount x relative to the curve pp(y). Mathema-
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matically, this can be written:

Any regular solution to the detection problem can be described by

a solution function A*(y) which assumes one of the two values: 0 or 1,

according to the value of .

b

Fig. 1.6. Conditional probabil-ity densities pp(y) and Pp(Y

(curves a); diagram of one of
the possible solution functions
A*(y) (curve b).

'Fig. 1.6b shows the diagram of one of the possible solution func-

tions (not necessarily optimum). It follows from the diagram that in

the given case for yo < y < yl a solution with a signal present is ta-

ken. The conditional probabilities D and 1 are, in this case, deter-

mined as the probabilities of the randpm quantity y falling into the

interval y0-yl under the conditions "signal - interference" or "inter-

ference," respectively. For the special solution function of (Fig.

1.6b) these probabilities are calculated from the formulas

,IP (6)

F (y) di

and correspond to the crosshatched areas below the curves psp(Y) and

-~ 24-



p p(y) in the diagram (Fig. 1.6a).

If we introduce an arbitrary solution function A*(y) in the gener-

al case, the expressions for D and F may be written as integrals with

infinite limits

D= J A'(y) p.. (y) dy,

F = 7 A' (y) p. (y) dy.

In fact, the y intercepts for which A*(y) = 0 will all yield zero in

the integration. The intercepts for which A*(y) = 1 correspond to

areas below the curves Pp(y) and p (y) in the same way. as was shown
sp p

in Fig. 1.6a. It is important to realize that the Relations (7) are cor-

rect for an arbitrary solution function A*(y), in contrast to Eqs. (6).

The expression D - 10F which corresponds to the weight criterion

may then be represented in the form

whr ,-,= )-4Jdy, (8)4

[where

'P 1@) ) ON
Accrdig-t th weght(9)-I

A-cording to the weight criterion, a detection system maximizing

the integral (8) is optimum. In order to fulfill this condition, it is

sufficient to achieve the greatest value of the expression under the

integral sign for each Z by choosing the solution function A*(y) approx-

imately. But this function can only assume two values: 0 or 1, such

that, according to the way it is chosen, the expression under the in-

tegral sign either vanishes or is multiplied by one. Although the

problem of obtaining the maximum is nonstandard it can be solved easi-

ly. Obviously, among two numbers - a positive one and zero - the posi-

tive number is greater, whereas zero is greater than any negative num-

-25-
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ber. Consequently, the greatest value of the expression under the in-

tegral sign for each yf, but also of the integral as a whole, can be

obtained in the following way:

1) we put A*(y) = 1, if the expression under the integral sign is

positive in this case;

2) we put A*(y) = 0, if for A*(y) = 1 the expression under the

integral sign is negative.

Since the probability density pp(y) is not a negative number, the

optimum rule for the solution to the detection problem may be written

in the 'form

if/@)>. (10)
01, if Wv <.

The quantity £(y) = sp(y) /pp(y) is termed the probability ratio.

The probability ratio is the ratio of the probability densities of

the same realization of "Y" under two conditions: if the signal and the

interference are acting and if the interference is acting alone. Simi-

lar to the two probability densities, also the probability ratio can-

not be negative.

Thus, the probability ratio criterion, which is a consequence of

the general criterion of the 'mean risk minimum can be used as a criter-

ion of optimum detection. According to the probability ratio criterion,

the solution of existing signal is adopted if the probability ratio ex-

ceeds some threshold value I.- This criterion is the most convenient

for practical calculations.

We note that the assumption of a normal (Gaussian) law of inter-

ference distribution was not used, as yet. The discussions given are,

therefore, valid for any distribution law.

Furthermore, let us assume that the interference is described by

a central Gaussian distribution with a dispersion n2 or a standard de-
0

- 26 -
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viation no. Bearing in mind that y = n, if there is no signal we have

)( 11 )

Hence, in view of Eq. (5),
Ip

AD a )- , e , (12)

In this case, the probability ratio will be

, _7-_2 -

A -) =-e e . (13)

Figure 1.7 shows the behavior of 2(y) for x > 0. The threshold

value 20 is plotted on the axis of ordinates. §1.3 dealt with the pos-04
sible ways of choosing the values 10" Since the curve 2(y) is mono-

tone, the condition A(y) > 10 is equivalent to the condition y > yo,

and the condition 1(y) < I0 is equivalent to the condition y < yo

(Fig. 1.7). Hence, for x > 0

A ( I.,(1 if > !/, 14

if Y<v..

1 -- - I I

Fig. 1.7. Dependence of probabil- Fig. 1.8. Curves of the condi-
ity ratio on the result of obser- tional probability densities
vation. pp(y),\psp(y) and diagram show-

ing the optimum solution func-
tion A*t (Y).
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Expression (14) for the optimum solution function shows that the

solution function chosen initially (Fig. 1.6b) was not optimum. A dia-

gram analogous to Fig. 1.6, but with the optimum solution function is

given in Fig. 1.8.

It follows from Fig. 1.8 that the probability of false alarm F in

the case of an optimum solution function corresponds to the area below

the curve pp(y) to the right of the abscissa y0. The value y0 will be

called threshold. For a given interference level the probability of

false alarm F depends only on the value of y0:

F=Sp( )d - dx. Tds]

where O(u) is the probability integral [(6) §1.2]. This implies that

the threshold value can immediately be chosen according to the given

level of probability of false alarm, which corresponds to the Neuman-

Pearson criterion. A similar approach is most convenient for the real

designing of the equipment since it makes it possible to avoid the

necessity of taking account of a-priori (pre-experience) data on the

or absence of a signal.

The probability of correct detection D corresponds to the area be-

low the curve psp(y) to the right of the abscissa

2 rm

-j41 ds- e dx 1* h34_1, -P-_

or finally D=_± 1+,(..(16)
-(16)
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For a given interference level no is is not only a function of

the threshold yo, but also of the value of the expected signal x.

The behavior of D(x) can be plotted qualitatively from an analysis

of the area below the curve pp(y) in Fig. 1.8 and quantitatively in ac-

cordance with Eq. (16). For x = 0 the value of D = F, for x = yo the

value of D = 0.5, for x >> yo the value of D = 1. The higher the level

of the threshold yo, the more the curve D(x) is shifted to the right.

This implies that a higher level of the useful signal is required to

guarantee the same probability D. The curves drawn in Fig. 1.9 are I
termed 'detection curves.

Thus, the very important probability ratio criterion was estab-

lished by considering the example of analyzing the one-dimensional op-

timum detection. Subsequently, we shall satisfy ourselves of the fact

that the concept of probability ratio will I
-D help us to solve all following problems. From

the expression for the probability ratio the

AS - -- 'i-- '~ optimum solution function A*pt(Y) correspond-

of 

w 

edf

j , ing to a simple comparison of the magnitudeof yf with the threshold yo was found. The

Fig. 1.9. Detection tecection curves specifying the qualitative
curves of a one-di-
mensional signal. characteristics of optimum detection under

different operating conditions of the detec-

tor were plotted. Furthermore, the problems of finding optimum solution

functions and plotting detection curves will prove to be important sec-

tions of the theory of real signal detection.

§1.6. EXAMPLES OF ONE-DIMENSIONAL OPTIMUM MEASUP04ENT

Let us return to the indicating instrument (Fig. 1.5), but put a

somewhat different problem. As before, we shall assume that the indica-

tion y of the instrument is the sum of the interference n and the sig-
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nal x:

y=n+x.()

In contrast to the preceding case, however, the signal is certain-

ly present, but its value x is unknown.

The problem lies in assigning an estimate x* to the quantity to

be measured x making use of the measured value of y and the a priori

known probability density po(x) of x. In this case, the estimate x*

must satisfy the criterion of mean risk minimum

r"=jr(x'. x)p(xo, x)desdx= min, (2)

i.e., it must be optimum.

We shall only consider regular soluticns where for each measured

value Z a quite definite estimate x* = x*(y) is given. Replacing then

the probability element

p(x'. 4),x'di by p(x, y)d@v4,..

where p(x, y) is the total probability density of the quantities x and

y, we obtain

d xt(3)

Putting, by virtue of the multiplication theorem,

we may rewrite Expression (3) in the form

- r(x, x) p()p(.)dx.
-40 -ft

Or

r- Ir(xYIP(YldY for x'=(y), (4)

where

r(x'ly)= r (x', x)p( (Ly) dx. (5)
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Relation (5) gives the mean risk as calculated for a fixed value

of the measured quantity y (the mean value is here taken over x). We

say that the conditional mean risk is obtained as the result of this

process of taking the mean. The mathematical expectation of the condi-

tional mean risk (4) as calculated by taking account of the probability

density of the measured values of I yields the absolute mean risk.

In order to minimize the absolute mean risk (4) it is sufficient

to obtain the smallest value of the expression (4) under the integral

sign for each Z by choosing the estimate function x* = x*(y) appropri-

ately. The latter is analogous to the choice of the solution function

A*(y) in the detection problem [(8) §1.5].

The quantity p(y) in Expression (4) is a given function and can-

not assume negative values. Consequently, the expression (4) under the

integral sign is minimized if for each y the minimum of the conditiun-

al mean risk r(x*ly) is guaranteed.

In this connection, we will return to Relation (5). The post-ex-

perience (a posteriori) probability density p(xly) enters its expres-

sion under the integral sign, i.e., the probability density of the quan-

tity x under the ccndition that the value y has been measured. Accord-

ing to the multiplication theorem

hence

p(xl)- P P(x) P(YX).

in order to minimize the conditional mean risk (5) the course of

the corresponding curve of the a-posteriori known probability density

p(xly) as a function of x must be known.

Integrating Eq. (6) over the variable x and bearing in mind that

- 31 -



p 1

for any y

T p(xy)dx- I

being an integral with infinite limits of the probability density, we

* obtain

p()- S p(x) p(ylx) dx. (7)

It follows from the obtained expressions that

= p(>p(/!x (8)P(l = P X YX
r pgx)p (ylx)dx

Equations (7) and (8) are, respectively, analogous to the formula

for the total probability and to Bayes' formula for the probability

densities.

Since the denominator of Relation (8) is independent of x, the

latter can be represented in the following form for each measured

value of y

~P NO - 4vp Wx p (AlX). (9 )

The normalizing factor ky in Eq. (9)

, , (1.0)

determines the scale of the curve p(xly) on the x axis such that the

area below this curve is equal to unity.

The function p(x) in Eq. (9) describes the a-priori probability

density of the values of 'the signal x, and p(ylx) describes the condi-

tional probability density of the quantity Z. By virtue of Eq. [(5)

§1.5]

Thus, Eq. (9) can be rewritten in the form

P(Ng) = kVp(X)p 5( - x). (12)
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We shall illustrate the obtained Relation (12) on the following

assumptions:

1) the a-priori probability density of the quantity x is describ-

ed by the expression

0 for x<x, H x>X,

x- for x,<x< ;

2) the interference distribution obeys a normal law [(11) § 1.5].

Figure 1.10a shows the curve of the a-priori probability density

p 0 (x). Figure l.lOb shows the curve

P (Ylx)= pg(g x)= 'e (13)

as a function* of the unknown value of x. This curve is a Gaussian

2 '
curve, plotted on the x-axis. Its dispersion is equal to no, and its

mean value is equal to the measured value of y.

Figure 1.10c shows the curve of the a-posteriori probability den-

sity p(xly), obtained by multiplying the cu-ves po(x) and p(ylx),

taking account of the normalizing factor k y. The area below this curve

is equal to unity. The curve p(xly) takes into account both the result

of measuring Z and the a-priori data on the possibility values of the

quantity to be measured x and the interference n.

The interference level exerts an essential influence on the a-pos-

teriori distribution. In order to realize this, let us consider two

limiting cases:

1) the interference is very weak - small compared to the interval

of measurable values (no << x2 - Xl)'

2) the interference is vci-y strong - great compared to the inter-

val of measurable values (no >> x2 - xl).

Figure 1.lla shows the curves po(x) and p(xly) p(ylx) for the
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case of a weak interference. In this case, the curve of the .a-poster

iori distribution is determined by the result of measuring Z and the

dispersion of the interference n C•

-Pots)

VS

b'*

c
V rs

Fig. 1.10. Probability density curves. a) Of a priori p(x); b) of the
probability density p(yjx) of the measured value of Z a a function of
the true value of x; c) of the a-posteriori probability density p(xlY).

Figure 1.11b shows the curves p(YlX) and P(xlY) = Po(X) for the

-case of strong interference. In this case the curve of the a-poster-

ior distribution is practically equal to the curve of the a-prior
distribution since the results of the measurement are not reliable.

The considered relations and examples of aposteriori probability

density curves p(xly ) permit us to return, to the problem of choosing

the optimum estimate X*t =* Xt(y ) . We shall require that this est-

mate should minimize the conditional mean risk (5)

r (.V'] -- r(x°. xip(xly)dx' =  mrin.

f or e 14

In the following we shall only use the square error value

X - ) (15)

j3 i
prbaiity dmlest ptyh)a the measurend vae ofiioal mafnction of-

- distritohmn sinceate reultiofnhs esre.taeno eibe
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Z; m - P -z -

Fig. 1. 11. Curves of th~e a-priori and a-posteriori probability densi-ties: a) For weak interf erence, no < x2 - Xl; b) for strong ihnterfer--!
ence, nO > x2 -

-x
1 .

Fig. 1.12. Curves of the a-posteriori probability density curve p(-Xy )
and the error value r(x*, x) if the estirmate x* was chosen unfavorably. ' If

Figure 1.12 shows the curve of the a posteriori probability den- isity P(xlY) and the error value curve for an arbitrary estimate x*. Ob-

viously, the estimrte x* differs considerably from the optimum in the:.given case, since a considerable error charge corresponds to the most
probable values of x,td a value of x with low probability corresponds

to the estimate x* itself. iaIn order to obtain the optimum estimate, we put the derivative of

the condit4onal mean risk with respect to the estimate x* equal to
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zero, i.e., we put

- (x-x'9p(xjudx=O for . =.,

Hence we obtain that
w

1,, j'xp(xj)dx=,( 1 xj),. (16)

i.e., the optimum estimate is found to be the center of gravity (first

moment) of the a-posteriori distribution curve. In other words, it is

equal to the a-posteriori mathematical expectation of the value x.

Using Eqs. (14-(16) we find for the magnitude of the conditional

mean risk in the case of optimum estimate

r(x.,IY)= [x-M lxyIJ'p(xly)dx=D xly}. (17)

As can be seen from Eq. (17) the quality of the optimum estimate

carried out is determined by the dispersion of the a-osteriori distri-

butior D(xly). The dispersion of the distribution can be expressed

in terms of its first and second momenta
D.XI)Mg{Xiy)M p1), (i8)

which follows immediately from Expression (17).

He 'e

AMxii=f 5'p,(x Iy) dx. (19)

Taking the mean of the quantity r(x.,Iy over all possible values

of Z according to (4), we obtain for the optimum estimates

r= SD{xjlyj(y) dy. (20)

Equation (20) characterizes the mirimum value of the mean suare

of the error for the entirety of measurement .onditions. This minimum

is guaranteed by condition (17); it' it is fulfilled (f'or -rbitrary

y) the estimate has no constant error, i.e.,
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m, ie' - x) m, M1 ((s - x) ly) o0.

4> We shall illustrate the obtained results by the examples of a-

posteriori distributions for a onedimensional measurement (Fig.l. 11)

in the case of a very strong and a very weak Gaussian interference.

In the case of a very strong interference (Fig. 1.11b) the cen-

ter of gravity of the a.-posteriori distribution curve and the optimum

estimate are equal to Xs+x, independent of the measured value of2

y. In contrast to this result, the optimum estimate is equal to the

measured value of y in the case of a weak Gaussian interference

(Fig. l.llb) since in this case y corresponds to the center of gra-

vity of the a-posteriori distribution curve.

In the case of symmetric convex distribution curves the center'

of gravity always coincides with the curve maximum. Consequently, the

abscissa of the maximum of the a-posteriori distribution curve

p(xiy). is often chosen for the optimum estimate, instead of (16).

Such an estimate will be termed most probable estimate. Thus, in the

case of no <x -xa considered above the estimate x'-y is the

most probable estimate.

The quality of the optimum estimates x* for the a-posterioriopt

distributions p(xjy) in example (Fig. 1.11) may be established on the

basis of Eqs, (17) and (20). For weak Gaussian interferences (Fig. 1.

lla) we have

r (x y) = D {x I y)-n

Since the mean square of the error is independent of y, it is not
2

changed after taking the mean over y, i.e., we have also no . For

very strong interferences (Fig. 1.11b) the dispersion of the a-post-

eriori distribution coincides with the dispersion of the a-priori one,

and its value is independent of Z:



.= r (.'0 D=(x D .x),

where

~ 12

The optimum root-mean-square deviation of the measurement for

the examples (Fig. 1.11) will be: ,vic,=n, for a very weak interfer- -1-
ence and scp,= for a very strong one. Thus, a variation of

the interference from. a very strong to a weak one varies the magni-

tude of this error by X2 -X times.n.IY
With this remark we shall finish the consideration of examples

of one-dimensional optimum measurement; It was shown in the course of

the consideration that the mean risk can be minimized starting from

the a-posteriori distribution curve of the values of the quantity to

be measured. In the case of a quadratic error value the optimum es-

timate corresponds to the center of gravity of this curve and in

many cases can be replaced by the most probable estimate. If the a-

-posteriori distribution is known also the optimum root-mean-square

deviation of the measurement can be estimated.

The statistic approach illustrated by the examples of onedimen-

sional optimum measurement is most widespread in the analysis of the

measurement of real radar signal parameters. In doing so, ftrst only

single, but then also successive multiple measurements will be con-

sidered.

I
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script (Footnotes)
Page [o t
No. 1" 4

31 In the given denotation p(x) and p(y) are different func-
tions, and not the same function with a different argument.
This way of labeling which is frequently used in statistics
will also be adopted in the following.

33 We remind that this curve is represented in Fig. 1.6a or1.8b as a function of the measured value of Z. In this

connection, the value of x was considered to be fixed.

[Transliterated Symbols]

Page
No.

10 gon = dop = dopustimyy = admissible

12 CKB =skv = srednekvadratichnyy = root mean square

12 Bep = ver = veroyatnyy = probable

13 Maic = maks = maksimal 'nyy = maximum

19 OnT = opt = optimal'ny-j = optimum

23 n = p = pomekha = interference

23 cn = sp = signal s pomekhoy = signal with interference
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Chapter 2

SIGNALS AND INTERFERENCES IN THE THEORY

OF DETECTION AND MEASUREMENT

§2.1. PROPERTIES OF REAL RADAR SIGNALS

Let us watch how a radar signal is formed. We consider the tar-

get tobe point-like and at reast and the conditions of radio-wave

propagation to be ideal. Let a radio transmitter produce modulated

high-frequency oscillations which are described by the function so(t)

except for an amplitude factor. Furthermore, since with most of radars

the antenna beam for scanning the space is formed according to a law

chosen earlier (Fig. 2.1), the transmission factor of the antenna in

the direction of the target will be a nonrandom function of time

Hl(t).* The sounding radar signal can be described by an expression

of the form so(t)Hl(t), in this case. The field of the reflected sig-

nal ar~iving from the point-like target with a delay of t will be,3
except for a factor,

#. (t - .) 14,(t -..

where 1=- (r is the distance from the target).

When the beam of the receivirg antenna is formed its trans-

mission factor for oscillations of this field is also a function of

time H 2 (t). Consequently, the signal entering the input of the re-

ceiver is subject to an additional modulation by~the function H 2(t)

and can be written in the form

x () = so (t - t) H, (t - )/ (t).
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B t For ordinai'y single-antenna radars Hl(t) = *

B
H2 (t) = H(t). Besides, the displacement of the 4

A antenna beam during the time of delay is, as

a rule, small compared to the width of the ra-

Fig. 2.1. Explanation diation pattern such that
of the process of'

radar signal forma-
tion in scanning.
A) RLS; B) target. and

x I) (t)s( - t). (1 )

Thus, a radar signal that is reflected from a point-like target {
at rest is a modulated oscillation x(t) whose modulation law is de- 1
termined both by the way the transmitter modulator works and by the :T,

behavior of the antenna beam in transmission and reception. A radar

may have several operating conditions, but for each of these condi-

tions the modulation law is considered to be fixed.*

The oscillation x(t) is a high-frequency one, and it can be re-

presented in the form XIt)--x cos,+ ,(, (2 )Kj

vihere w0 is the carrie- frequency, and X(t) and cpx(t) are functions ,J

which usually vary slowly compared to the oscillations of the carrier

frequency cos wot. These functions desc;ibe the laws of the amplitude

and phase modulations, respectively.

We shall give some very simple examples of radar signals.

Figure 2.2 shows: a signal in the form of a short radio pulse

x(t), its envelope X(t), and also the initial phase cPx(t). In the

given case, we note that there is o phase modulation. Consequently,

%x(t) =const. Such a signal is obtained in the case of a pulse mo-

dulation of the transmitter if one pulse is .transmitted to the point-

like target.
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a Figure 2. 3a shows a si ghal in the form of

i t a packet of short radio pulses following one an-

other after a sending time T in the case of' uni-

x. rt," form antenna beam formation relative to the

c X Vr - direction toward the target. Fig. 2.3b shows

] the envelope of the packet whose shape depends
~Fig. 2. 2. Example of a
'radio pulse (a); its on the modulation law governing the formation

i envelope (h); time-
°dependence of the in- of the beam. Fig. 2.3c shows the initial pulse

i itial phase (c).
phases on the assumption that the target is at

~rest, the transmitter pulses have the same in-

itial phase and that the formation of the antenna beam does not give

rise to a phase modulation.

~Packets whose phase varies from pulse to pulse according to a

~definite law are termed coherent packets.

Figure 2.4. shows a coherent packet characterized by its phase

structure. The variation of the phase from pulse to pulse due to the

motion of the target (toward the radar) with a constant radial velo-

city Of v r = const is taken into account. For this reason, the path

of the electromagnetic oscillations to the target and back is re-

duced Ly r. -- 2u,T during each sending period T. Thus, the phase delay

S is reduced and the initial phase of the signal is increased by

2n from pulse to pulse, where X is the wavelengthn.
Yt' ' r.

The difference in the phase structure of the coherent packets in

Fig. 2.3. and 2.4 due to the motion of the target is additionally

illustrated by Fig. 2.5, where the mn intercept of Fig. 2.4 is drawn

at a larger scale. The solid curve corresponds to a -target moving with

constant radial velocity, and the dotted line to a target at rest.

Figure 2.6 allows for an indefiniteness in the intitial phase of

zhe emitted oscillations, ahich arises if the initial phase of the
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generated oscillations is random and not kept in mind in order that

it can be eliminated in the reception. '

A packet with random phase variation from pulse to pulse (Fig. 2.

6) is termed incoherent pulse packet.

The analysisof a radar signal in the case of a nonpoint-like

target can be simplified considerably if the diagram of the secondary

reradiation having a petaloid form for nonpoint-like targets is in-

troduced. Since the angular position of the target is random, also

the signal has a random amplitude. If during the time of irradiation

the target is shifted aside relative to the direction toward the

radar (Fig.2.7) the signal suffers an additional modulation, accord-

ing to the kind of motion and the form of the secondary reradiation

diagram. In this case, the envelope of the packet is distorted

(Fig.2.8). The same result can be obtained if the target is replaced

by all elementary reflectors distributed over the volume it occupies.

The distortion of the packet is here explained by the interference

of the elementary packet signals from the point-like radiators super-

posed on each other. The shift of the target relative to the direc-

tion toward the radar gives rise to an inequality of the radial vel-

ocities of all target points and, therefore, also of the initial

phases of the interfering pulses.

Thus, real radar signals have the following properties:

1. Regular modulation determined by the way in which the trans-

mitter works and by the law of antenna beam formation.

2. Regular variation of the signal phase structure owing to the

target moving with fixed velocity. -"

3. Random amplitude and phase modulation of the signal in the

casE of secondary radiation or presence of random signal parameters

(Cf' uir_ - -=t Lradiation ne target is not shifted remark-
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ably relative to the direction toward the radar).
I
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Fig.2.3. Coherent Packet of Fig. 2.4. Coherent packet of re-
reflected radio pulses (); flected radio pulses (a); time de-
its envelope (b); time de- pendence of the initial phase (b)
pendence of the initial ,I (case of point-like moving reflec-
phase (c) (case of reflect- tor).
or at rest).

It is essential feat e that the delay of the signal depends

on the distance from the target, and that the phase structure depends

on the radial velocity. This fact makes it possible to measure both

the distance and the radial velocity.

vfo rso 2/7 sfr 
AA

~I I

Fig.2.5. Variation of the phase
structure of a coherent packet
of radio pulses in the case of
a moving point-like reflector.
1) at; 2) at.
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Fig. 2.6. Incoherent pack-
) et of reflected radio pul-
~ses (a) and possible time

dependence of the initial
Sphase (b)

0s

Fig. 2.7. Explanation of
the random modulation of a

reflected signal in the
case of a moving nonpoint-
like target. l) RLS.

tft)

A r

Fig. 2.. Incoheren pack-n

the distortion of the en-
velope of a radio-pulse pack-
et due to the motion of a
nonpoint-like target.



§2.2. BASIC MODELS OF RADAR SIGNALS

Certain signal models are used in the theory of detection and

measilrement of parameters. A model must satisfy the contradictory

demands of a sufficient similarity to the real signals and simplicity

of theoretical analysis. The degree of generality of the results

which can be obtained is also of essential significance. According

to which of the demands is more important one or another model of

radar signal of different degress of complexity is used.

The simplest model is an arbitrary signal with fully known

parameters.

x(-)=X ( co [.t+T(6. (1 )

In a detection problem only the fact if this signal is present is

considered unknown.

According to the degree of complexity this model is followed by

that of a signal with random initial phase

x(Y, P)=X ()cos [-t+yP (4+'P], (2)

where is a random quantity, uniformly distributed in the interval

from 0 to 21T.

Furthermore, the model of a signal with random amplitude and in-

itial phase can be introduced

i,~ Y (, P. B)=8X(WOCos [Wit+% (1)+p]

where not only P, but also B is a random quantity. Usually, the latter

quantity can be regarded as distributed according to Rayleigh's law

,,(a)= B e- (8;Po),

where the mean-square value of the amplitude is determined from the
condition

p 2B.'

c0.6
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We may put Bskv = 1, without l eoss of generality. Hence

p(B=2Be' (B ;O). (4)

The following model is a signal in the form of a packet non-

fluctuating as to the amplitude with random initial phases of the in-

dividual nonoverlapping pulses

x~t, p..(5)

Usually, the Bk are independent random quantities each of which is

uniformly distributed in the interval from 0 to 27'. This model

corresponds to an incoherent packet of radio pulses.

If all ,k are equal to the same random quantity P, the packet

signal reduces to the signal (2).with random initial phase. In fact,

expression (5) will go over into expression (2), if we assume within

the limits of the kth pulse X(t)=X(t), (p(t)=c,(1) , a:nd in the in-

tervals between the pulses ;X(I)=O . Such a signal model with the

same total phase for all p,.lses (see Fig.2.3) is, obviously, a

coherent pulse packet.

The expression

X(f, p,,...;B,,...)-- B,Xk (1) cos [wt -?k (1) +L Pkj ( )

contains random factors Bk allowing for the flactuation of the packet

ienvelope (Fig.2.8), in contrast to the preceding expression. If all

random factors Bk are equal: B1 = ... =Bk = B, we have the case of'

."friendly" fluctuations, where only the packet amplitude fluctuates,

but the form of its envelope remains unchanged. Another limiting

case is the independent fluctuation of thle packet pulses, where all

Bk are independent random quantities.

Thus, for detection problems the radar signal model can be re-

presented by an expression of the form
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k~x t, .s..(7)

l .""are hel:e random parameters whose common distribution law

is given. Only the fact whether such a signal is present is consider-

ed unknown.

For problems concerning the measurement of para' .trs the signal

can be denoted in an analogous way

X(t all ,... P(8)

where, additionall, a,, a2, ... are parameters subject to measure-

ment. Among these, e.g., there may be quantities characterizing the

distance from the target, its radial velocity, angular coordinates,

etc. The same fact whether the signal is present is considered un-
! known, in this case.

§2.3. FLUCTUATION INTERFERENCES AND THEIR STATISTICAL PROPERTIES

7Fluctuation interferences (fluctuation noise) play a special

role among the interferences limiting the possibilities of receiving

weak radio signals. These interferences may be generated by various

phenomena in the input units of the radio receiver, as, e.g., by

thermal motion of the electrons in the conductors and resistances,

by a short effect in the electronic amplifiers, etc.

Fluctuation noise may also be~induced in the receiving antenna

by electromagnetic oscillations due to all kinds of electron motions

in the surrounding terrestrial or !cosmic space. All these sources

cannot be fully eliminated, a fact that explains also the particular

role played by fluctuation noise among the other kinds of interfer-

ence.

Fluctuation noise is one of the stationary random processes, i.e.,

of those processes whose mean statistic characteristics, as, e.g.,

their mean power, are constant in time.

In order to clarify the statistical laws governing the fluctua-
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tion interferences, we shall turn to the simplest arrangement used

to observe these interfererices 'Fig.2.9). This arrangement consists

of the noise source, a linear band-pass amplifier, whose pass band L
Af is considerably lower than the central frequency fo' and the os-

cillograph. We assume (as is usually the case, in reality) that the

pass band of the amplifier is considerably narrower than the spectral

width of the noise source.

A -C Obviously, the individual random

i"'v" Ib -• random noise pulses will set swinging

Fig.2.9. Simplest arrange- the oscillatory system of the amplifier.
ment used to observe fluc-
tuation noise. A) Noise Since the pulses are random: the volt-
source; B) band-pass amp-
lifier; C) oscillograph. age at the output end of the amplifier

will be given by an oscillation with

random amplitude and random initial phase (Fig.2.lO)

since it is obtained by the reaction of the amplifier's oscillatory

system superposed on each pulse.

The narrowe: the pass band Af, the more time is taken by the

transient in the amplifier circuits that is due to each individual

pulse, and the more slowly vary the amplitude Un(t) and 'he phase

Tn(t) compared to the high-frequency oscillations cos2wfot or sin 2rfot.
0" 0On the other hand, the wider the band Af, the sooner the reaction after

each pulse coues to an end and the more choatic the oscillation n(t)

will be.

Fig.2.i0. Random noise realization
at the output of the resonance amp-
lifier tuned to the frequency fo"

-49-
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Let us choose at random a sufficiently great number of instants

of time for the purpose of observation t i (i 1, 2, ... ) in an inter-

val exceeding the value of 1/Af by many times. As is well known, the

latter quantity characterizes the duration of the t.*ansients in the

oscillatory system. The.position of this interval on the axis of

time is unessential since the process is assumed to be stationary.,.

! 7 We shall consider the voltage values ni = ni(t) at the chosen

, instants of time to be the values of a random quantity n chara'vterized

by the probability density p(n). Since positive and negative values

of n are equally probable, the distribution function p(n) (Fig.2.11)

is symmetric relative to the axis of ordinates n = 0, such that the

mean value is R = 0. The probability of the valuer ni lying in the

interval from n to n + dn will be equal to the corsshatched area

p(n)dn. The whole area below the curve p(n) is equal to unit. The dis-

tribution curve of the instantaneous values of fluctuation noise obeys

a normal (Gaussian) law,

.- ,~(n)= . -- ""'
) e(2)

where n2 is the dispersion.

'l.PI The applicability of the Gaussian

law to the case consi.dered follows imme-

diately from the central limit theorem of

the theory of probability. At any instant

of time, the voltage n at the amplifier

Fig.2.ll. The distribu-
tion curve p(n) of the output is composed of i,:: ' resuts of a
instantaneous values of
the fluctuation oscil- very great number of random effects each

lations, of which yields a component of the voltage

with sufficiently small dispersion. Under

this condition, the law of great numbers is valid and the distribution

- 50 -
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of the quantity n as well as that of the accidental .'ors s, (§1.2) q
is sufficiently close to a normal one. 1V

The distribution law of the instantaneous fluctuation noise

,'alues can be observed if the voltage n(t) to be studied is fed from

the amplifier output to the vertically deflecting plates of an oscil-

lograph with switched off sweep. In this casey a bright vertical line

of high intensity in the center and lower one at the edge will be ob-

served on its screen. The curve of brightness distribution, which,

e.g., can be taken by means of a photocell, will correspond to a nor-

mal distribution law (2). I

Besides by the distribution law of the instantaneous values,

the noise can also be charact.vized by the distribution law of its

amplitude Un and its initial phases (n"

The values U. and n at the instants

of time ti, as well as the values n-, are

random quantities, the first of which is

______ distributed according to Rayleigh's law
(Fig. 2.12),

U2Fig. 2.12. Distribution__2
curve of the fluctua- *' M2 (3)
tion oscillation amp- peU.)-- ,
litudes.

whereas the second quantity has a uniform

distribution within the limits from zero to 27r.

The distribution law p(Un) can be observed by using the same

arrangement as in (Fig.2.9) if a linear envelope detector is inserted

between the amplifier and the oscillograph. In this case, a bright

vertical line with an asymmetric brightness distribution will be ob-

served on the screen. The brightness curve will, in this case, obey

the Rayleigh law (3). The most intense brightness will correspond to

the most probable value of the amplitude.

The distribution laws p(n) and P(Un) characterizing the possible
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oscillation amplitude at every instant of time does not make it pos-

sible to estimate the statistical connection of the oscillation values

n(t) at neighbosi-ng instants of time. Thus, they also do not permit

a clarification of the genaral structure of the individpal noise rea-

lizations (Fig.2.10)determined by the character of the transients in

j / the amplifier circuits.

'/aW/,m --Z...

a YAu;me.~

I'Doxx 'A 'B Ci

rxmmov, D@

Fig.2.13. Diagram showing the oscillographic observation of the cor-
relation function of fluctuation noi:.e.. A) Line of variable delay;
B) multiplier; C) integrating averager; D) sweep generator.

To descrzibe this structure it is sufficient to take the curve of

--4 the noise correlation function. The latter can be obtained experimen-

- =I tally if the circuit shown in Fig. 2.13a is connected with the output

of the amplifier (Fig.2.9).

In this circuit orovision was made for a delay of the fluctuation

voltage n(t) by the time ', multiplication of the delayed and nonde-

layed oscillations* and taking the time average which can be realized

approximately by means of an RC-type integrating circuit.

As a result, we shall obtain a quantity, which can be adopted

approximately as the true value of the noise correlation function,

for each fixed delay T

' ~ ~ ~ -)1 (4i)

5
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The measured value will be the closer to the true one (4), the

longer the period of averaging T compared to the ("iration of the tran-

sient, which can be measured by the quantity 1/Af.

The correlation function R(T) characterizes the statistical con-

nection between the value of the noise n(t) at a given instant of

time and its values at the preceding instants of time n(t - T). In the

general case, the quantity n(t) has a component determinable by the

value of n(t - '), which can be considered the initial value. The

influence of the initial conditions decreases when T increases and

becomes insignificantly weak if T exceeds the duration of the trans-

ients. Consequently, if T >> 1/Af 'the values of n(t) and n(t - T) be- I

come independent, and their product n(t)n(t - T) a random quantity

whose mean value is equal to zero.

Conversely, if T is sufficiently small compared to the duration

of the transients, any value of n(t) is only slightly different from

n(t -- r) and R( ) is close to maximum

r

R (0) = rn (t dt.

The vallue of R(O) determines the mean power of the stationary process

n( ) for a load resistance of one ohm or, differently, the noise dis-

persion at the output end of the band-pass amplifier

IZ(O) -n:
The curve of the correlation function R( ) can also be observed

if the voltage is fed from the circuit output (Fig.2.13a) to the ver-

ticelly deflecting plate of the oscillograph (Fig.2.13b) whose hori-

zontal sweep is synchronized with the periodical variation of the de-

lay time r. The observed curve of the function R( ) will have a shape

similar to that drawn in Fig.2.14b. In this case, the period of the

sweep T must exceed the time of integration considerably.
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In the given case. the correlation function corresponds to the

noi c at the output end of the oscillatory system (Fig.2.9). Since

the transients in this system are oscillatory, also the correlation

function has the shape of a high-frequency oscillation whose amnpli-

tude decreases with increasing T and apprcaches zero if Tr >> l/Lf.

The zeros of the function R(T) are separated by time intervals approx-

imately or exactly equal to the natural oscillation period of the

system. The damping of the corelation function aplitude for increas-

ing T is connected with the r',':!on and the character of the trans-

Kients in the system, which was discussed above.
The course of the correlation func-,I

spectral point of view.

if As is well known from the theory

Val of stationary random processes, the

b ,Fourier transform of the correlation

function yields the spectral density of

the noise or its energy spectrum to

be determined in the range-- < f < ,

Fig.2.l4. Example of a rec-
K tangular interference spec-

trum and the corresponding N(fl=S(e-mw, d" 5
curve of the correlation

In its turn, the correlation func-

tion is given by

R(v)- N(f)e' 2 l'df. (6)

Since R(T) is an even function, i. e., R(r) = R(- ), N(f) is also

an even function. Consequently, an expan ,icn in the frequency spectrum

0 < f < co is frequently used. This expansion is ohtained by putting

N(f) =N(,-f) = 1/2 NO(f) in Eq. (6). In this case

- 5.1 -
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R W So(f) cos 2%tdf.",.. (7) ";

In its turn, N0 (f) = 2N(f). Using the fact that R(-) is even we

obtain finall"y' Go

No (h- 2_ R (%) e-r' d%--4 JR(,z) cos 2,xf-dt.

a(8)

Figure 2.14a. shows an example of rectangular spectral density

distribution of the-noise NO(2) with a spectral width Af. This case

is particularly easy to calculate although the frequency characteris-

tics of real physical systems, i.e., also the spectral density may

not be strictly limited as to the frequency.

Carrying out the calculation according to formula (7) we obtain

for this case

S,,,( ,.l. s 2z L(9)

The corresponding curve of R( ) is drawn in Fig. 2.14b which illus-

trates graphically that

1) the curve R(T) is symmetric relative to T = 0, i.e., the cor-

relation function is even; .

2) at T = 0 the correlation function assumes the maximum value 4

equal to the noise dispersion or, in other words, to its mean power

with a resistance of 1 obm.

3) the high-oequency filling of the function R(T) has the same

period

.= -rAe f.--ite
!2

as the noise at the output end of the band filter.

Thus, if the distribution law of the instantaneous noise values
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I characterizes ,he noise statistics at each fixed instant of time the

correlation function describes the statistical connection of noise

values at instants of time separated by intervals T. The smaller the

ratio R(T)/R(O), the weaker the statistical connection between them.

§2.4. White Noise as a Model of Fluctuation Noise

As is well ktiown, the thermal radiation spectrum has different

intensities for different frequencies. Within the limits of the radio-

frequency range, however, its intensity is practically constant. At

any rate, it can be affirmed that within the spectral ranges occupied

!T by radar or other radio signals this intensity is constant. In order

to simplify analysis one often passes, therefore, to the model of

thermal noise with a perfectly uniform radiation spectrum. In ana-

logy to the white light which is characterized by an equal spectral

intensity in the whole frequency range corresponding to the visible

part of the spectrum this model of thermal noise is termed white noise.Lji" Let us return to the problem concerning the connection between

the spectral density and the correlation function in order to extend

this connection to the white noise.

Figure 2.15 shows the transition from noise in the frequency

fl band , to noise in the frequency band 0 < f < fmaks'

4 V which will be called quasiwhite noise in the following, and, finally,
a I the transition to the case fau-O , corresponding to the intro-

duction of the white noise model.

Figure 2.16 shows the correlation function of quasiwhite noise.

The width of its main petal as taken between the zeros is equal to

2 and its maximum value is equal to the noise dispersion

NOfmaks*
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The area surrounded by the curve of

the correlation function is determined

from the relation [(8) §2.31 if we put

SB f =0 in it: 3
b "______ (1)

_~_ _ _C

~ j___________This area does not, depend on, the value[
of f'eaks

ig. 2.15. Explanation of' It is easy to understand what hap- f

transition to white noise. pens with the correlation function if 4
A) fmin; B) fmax; C) fmax p

D) fmax" fmaks increases. It shrinks relative

to the axis of abscissas and is stret-

ched in the direction of the axis of or-

dinates such that the area surrounded by the curve of the correlation

function always remains equal to NO/2. In the limiting case if'

f'O
fmaks 54

or

(s) 2 (2) I
Here

-. (3)

is the delta function which is equal to zero if t 0. It becomes in-

finite for T = 0 and is characterized by the property that

(4)

Thus, the correlation function of white noise is described by a

delta function except for a factor NO/2. This implies that two arbi-
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Fig. 2.16. Curve of correlation func-tioni for f min = 0. 1) f maks"

trary values of noise correponding to a finite interval between the
moments of 'observation are not correlated with one another

One says that white noise is delta correlated. This property con-
siderably Simpllfies the mathematical calculations when white noise is
used as an interference model.
§2.5..ApDLoximation of Signals and Interferences

In the example of optimum detection and measurement (§1.5 and 1.6)
considered earlier the probability densities pp(y) and Pep(Y) of a one-

dimensional random quantity y were used. The introduction of these
functions was not difficult: the interference as well as the signal
were characterized by only -one numerical value y. The situation is com-
pletely different if the interference and the signal are functions of
time. Obviously, neither of them can be described by one numerical val-
ue in the general case. In this connection the problem arises how many
independent numerical values must be given in order to describe, e.g.,

tthe interference. In other words, how many degrees of freedom has this
interference?

This pr'-.lem is closely connected with the approximation of sig-

nals and interferences by series of the form

where are nonrandom functions, and Yk are the expansion coef-

ficients with respect to theze functions, random for *"he expansion of

the interference. If an interference is completely characterized by

some set v of independent random coefficients yk(k = 1, 2, ... , ) one

says that it has v degrees of freedom.

Most convenient for practical use are expansions where %'k( i are

orthogonal fvnctions of time, and the expansion coefficients of the

interference Yk are independent random quantities. In thic case, the

-58-
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________ = *f ~an.n t~-

approximation (1) is termed canonical expansion.

The entirety of quantities Yk completely characterizing the re-

alization of the interference y(t) is a moredimensional random quanti-

ty whose distribution law may be regarded as the distribution law of

the realizations. Thus, it is possible to speak of a mcredimensional

distribution law of one interference pp(Ylj Y2, "''' ' "'") If a

signal is superposed on The interference, one has, however, to speak

of a moredimensional distribution law of signal and interference

Psp(Y! ', YO, "' I Yk- 1 "

We shall not dwell on the ge:ieral problems of constructing I
!*

canonical expansions, but rather consider their construction for the

quasiwhite noise model, i.e., noise in the limited frequency band

0 < f < fmaks with constant spectral density N0o(f) = N in this band.

The passage to the limit f m -4 " makes it possible to pass from
maks

the relations obtained in this case to the corresponding relations

for the white-noise model.

First of all, we shall consider the properties of. func-tions with

limited frequency spectrum for the first time established in 1933

by the Soviet scientist V. A. Kotellni.ov, which eaually belongs to

random and nonrandom functions describing interferences and signals.

§2.6. KOTELINIKOV S THEOREI

The essential statement of the theorem is the fact that an arbi-

trary function y(t) whose spectrum is concentrated in the frequeficy

band 0 < f < fmaks can be expanded in a series of functions of the

form 5 , i.e.,

where Yk = Y(t ) are the expansion coefficients having ,n interesting

property insofar as they are equal to the instantaneous -alues of'
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the function y(t) at discrete instants of time

t =kA (k=O.±1, t2,...).

At is here a time interval whose magnitude is determined by the width

of the frequency spectrum of the function y(t)

(2)

Functions of the form =--- (Fig.217) whose values vary by Yk

and are shifted in time by At to the left and to the right enter for-

mula (I) as addends. Their summation yields a curve that coincides

with the curve y(t) in all points. This is easy to verify immediately

for the discrete points tk = kAt, at which all addends of the sum (1)

except for one, vanish. For t = tk the addend different from zero

assumes a value equal to the instantaneous value of the function y(t)

at the instant of time t k .

For the intermediate points of

each interval At the validity of for-

f at I ArI . mula (A) must be proved. It is, how-

- .... ever, evident without proof that the

A
y l' t"NAI sum (1) on -an arbitrary interval At

-. - A cannot experienve remarkable oscilla-

, 'is . tions since it does not contain any

A
A _tf-N spectral components whose period would

I- A t

st , (t-UV be shorter than =2W

A The proof of Kotel'nikov's theo-

rem may be obtained from the Fourier
..........

Fig.2.17. Explanation of integral

Kotel'nikov's theorem A) a,

Max. v (t):= -j e(JW"1 ' d G (I) e'"df, (3)I-ie

if the spectra function G(f) given different from zero in the interval

-6o -
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fmaks < f < fmas is replaced by the function GI(f) with a period
2fmaks coinciding with the spectral function in this interval and con-

tinued periodically, and the latter is expanded in a Fourier series

The periodical continuation of the function G(f) is illustrated for

its modulus IG(f)I by Fig. 2.18. Determining the Fourier coefficients

Dk in the usual way and using the formulas (2) and (3) we obtain

Ik -2 7f) d (kAt). (5)' j Y-.0  5

Substituting expression (4) for '

G1 (f) into the right-hand side of

-2c _Eq. (3) instead of G(f) and using the

expression for the coefficients of

Fig.2.18. Illustration of the the series (5) we obtain an inter-
periodical continuation of
the spectral density G(f) by changing the order of integration
the example of its modulus.

and summation

-loans

Carrying out the integration we obtain expression (1) correspond-

ing to Kotel'nikovts theorem,

sin I2aYuaadI - fil

Kotellnikov's theoren may be considered to be an alternative form

of the series expansion

with respect to the nonrandom functions,

-6 1 -

iZ

+ " -+' + .. .. . . . .. . . . . + + + "" " ,++'++ "- -. ,- "' -- ... . ' " ":'' A + .-' &+

"__ _ _. ..-__ _-_ _-_ _- o__ _ _,__ _;++'+,] -+J- :.V, ++ ,. + ,



V - A)-t- .-. ,-n rw-..-.-.t--t_.

"EL-

It can be shown that these functions are orthogonal. to each other

in the interval -c < t < oo i.e.,

SA,(t),()d=O. if k/l.
Iso

Thus, Kotel'nikovts tehorem permits signals and interferences

with a.limited spectrum to be expanded in orthogonal nonramdon func-

tions.

§2.7. METHOD OF SOLVING PROBLEMS OF DETECTION AND MEASUREMENT OF RADAR

SIGNAL PARAMETERS ON A FLUCTUATION NOISE BACKGROUND

Let us remember the problem of optimum deteftion of radar signals

and measurement of their parameters formulated in §1.4. An oscillation

v(t)=nQ)+Axv(t,. .. ' P..)

is received, where n(t) and x(t, a1 , a2, ... l' 2' ... ) are the

interference and the signal, respectively. The signal is given as a

function of the time t, the measurable random parameters a1 , a2,

and the unmeasurable parameters P1' P2 1 ... In its turn, A is a dis-

crete random parameter (0 or 1) to be determined in the detection.

On the basis of the received oscillation y(t) and the well known

statistics of the interference and all random parameters the estimates

A*, a,, a2, ... of the discrete and the continuous parameters must be

given.

In order to explain the method of solving this problem we shall

simplify its conditions to some extent. To start with, we shall afsume

that there are no unmeasurable random pa.rameters. In this case

In particular, for the detection problem

-n ()-+ Ax ((1)

and for the problem of measurement

- 62 -
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y(t)-n(t)-[x(t, a,, as .... ) (2)
The relations (1) and (2) differ substantially from the corres-

ponding relations for the onedimensional case insofar as functions of

time enter into them.

We shall assume that these functions do not contain spectral con-

stants ourtside the frequency band 0 < f < fmk"Meanwhile, we shall

consider the quantity mksto be finite, intending to pass to the

limit fmaks-* finally. According to Kotellnikovls theorem the func-

tions n(t), x(t), y(t) can be fully characterized by the set of theirt

discrete values i

ria, Ys, ..

In other words, we may pass over from the random functions of time to

- -4-

multidimensional random quantities. Assuming their distribution to be t"

continuous, these quantities can be characterized by the corresponding I

multidimensional probability densities, e.g., P(Yll Y2' "'" ) and ii

Psp(Yl' Y21 ... where as before the subscripts "p" and "sp" denote

the conditions that only an interference or a signal with interference "

are present. When multiplied by dYldY2 ... these densities-characterize

the probability of realizing the values of the first discrete quan.tity i

within the limits of Yl and yl + dYl, and those of the second quantity !!

within the limits of Y2 and Y2 + dY2 , etc. Moreover, since the quanti-

ties Yl' Y2" """ uniquely determine the whole curve y(t), the total

probability P(Yl' Y2"1 ... )dYldY2 or Psp(Yl, Y2' ... )dYldY2 determines

the probability of realizing the whole curve y(t) in the following sense. '-

If two noninteracting curves (dotted in Fig. 2.19) satisfying the con-

ditions of Kotellnikov's theor -m are directed through the points Yl' ,"

..and Yl + dYl' Y2 + dy2 ".'. the probability of the realization of

63. -
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y(t) lying between these curves in the presence of solely the inter-

ference will be equal to p(yit2,i..:) dyidy2 ... , and in the presence of

- signal and interference PcIY1( Y2 .... )dydy2 ...

It is well known that the onedimen-

o - ysional random quantities are characteriz-

ed by points on a straight line, the two-

I I Idimensional ones by points on a plane,
and threedimensional ones by points in

Fig.2.19. Explanation
of the concept of the space. The threedimensional quantity
probability density of
realising y(t). Yl, Y2, Y3, e.g., can be represented by

a point in a Cartesian coordinate system.

If the probability density p(yl, Y2' Y3) corresponds to each point of

the space, the integral

SS p yi y,) dgdy~dyl=.I

Sometimes, one speaks of a multidimensional space, assuming it

to be some abstraction that is illustrated plastically by means of

a three dimensional, twodimensional(plane) or onedimensional(straight

line) space. Each realization Yl, Y2, Y3, "'" may in this case be re-

garded as a point of a multidimensional space. Obviously, also in this

case
P OIS a ... y ' ' d y 'dy 2 ' . '. - 1.(

The use of a mult"Ldimensional-space terminology causes the well

known transparency, but sometimes also gives rise to conceptual dif-

ficulties. These difficulties can always be avoided if the point of

the multidimensional space is interpreted as a conventional name for

the realization of the expansion coefficients

In the case of regular detection on a regular solution must be

- 64 -
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adopted for each realization yI, ... This implies that a solution

function A*(Yl, Y2, ".") can be introduced, which may assume two values

according to i*s arguments: 1 or 0, to which solutions of present or

absent signal correspond. In other words, to each point of the multi-

dimensional space its value A* - zero or unity, must be ascribed. Thus,

this space is split into sections. According to into which section the

point corresponding to the received oscillation falls the solution A

of present or absent signal must be adopted. The choice of the best
*

solution function A opt (Yl' Y2, "'") or, in other terminology, the
o

best splitting of the multidimensional space into two regions A = 0

and A = 1 and represents a problem of the theory of optimum detection.

It is easy to see that there is full analogy to the onedimension-

al case of detection. There, the solution function of only one variable

was involved and the splitting into the regions A = 0, A = 1 was

carried out for a straight line. In this case, however, the functions

of many variables are considered and the splitting into regions must

be carried out for a multidimensional space.

Let (s obtain the probabilities of correct detection and false

alarm for an arbitrary solution ftunction A (yl' Y2, .. ). In analogy

to the relations [(7) §1.5] we may write

D-jfJ... A'(y, y,...)p ft(yi , y,,...)dydy..., (4)

,A J '.. " (y,, Ys.,... ) pn 'Yi,, .... ) d ,d2.... . 5
(5)

In order to choose the optimum method of detection we shall, as

before, use the weight criterion which is a consequence of the criterion

of the mean risk minimum.The expression D - X 0 F, corresponding to the

weight criterion can be represented in the form

. ~-- 1,dydw...,
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where

s (1(7)

Since a system that maximizes the integral (6) is optimum from

the point of view of the weight criterion we obtain as in §1.5

,, ,. .,..) < .. (8)

We note that the quantities yl, Y2 " ... uniquely depend on the

Veceived realization of y(t), for which reason the denotation 1[y(t)]

.ay be used instead of the denotation 1(yl, Y2, ... ). In analogy, the

denotation A*[y(t)] may be used for A (Yl, Y21 ... ). The solution (8)

of ti-, problem of optimum detection may then be written in the form

AL,[y(t)]__{O " 11l]>

[0 , ifIl)< 1.. (9)

Thus, we have established that optimum detection problems can

be solved by the following method. The probability ratio (7) for

the received oscillation y(t) must be calculated. This probability

ratio must further be compared with the threshold L0" The solution

of present signal is adopted if the probability ratio X[y(t)) > 10

I.: and the solution of absent signal if 1[y(t)] < I The value of X

is chosen such that the probability of false alarm F does not exceed

11 the admissible value Fdop*

When solving the problem of optimum measurement of the parameters

al, a22, ..., we have to apply, as also in §1.6, to their a-posteriori

probability density p(al, a 2, ''" lyI Y2 1 ... ) , where yl, Y2  "... are

discrete values of the received realization of y(t).

;. . According to the theorem of probability multiplication we may

write
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P(1 io) .....s.Ys

whence we have for a fixed realization of the received signal

,,(41,.as.... I,.,....)=*
,p (a&, as,,... ) p (y,, y,... a,, a,(...))

where

1 (12)

= ... 4pc,. as .... )p(Mo. 9,2.... ,-,. . ,d ..

If the a-posteriori probability density is known the estimates

that are optimum from the point of view of the mean risk minimum can

be determined. In amny cases, the most probable, i.e., those estimates
* *

a 2' "''' that maximize expression (11) are, in particular, the

optimum estimates.

When obtaining the optimum estimates the quantity of the proba- .4

bility ratio can be successfully used, as in the detection problem.

In fact, the expression

P , Wv ,s at I , as, . . .)= a, (Y,, Ys,. • -- %, a,,...)

is the probability density of the realization of the expansion coef-

ficients yI, Y2 1 ... under the condition that an interference and a

signal with the parameters a1 , a2, "'" are acting.

The same realization of the values yI, Y2 " ".. may appear also 4.
if only an interference with a probability density of*P,(Y,, M,,.. .). ! i

is acting. The ratio of these probability densities is the probability

ratio as calculated for completely determined values of the parameters

a,, a2 ,
(13

MY$ Ns. Ias-)
• E,. W .. 11. O I , .... a=t, , .1 ,, . (13)
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Substituting the value of p(yI' Y2, ... Ial' a2, ... ) found from

formula (13) into (11) we obtain

where
KkPE(s a...(15)

Noting that ylV Y2, ... are determined by the realization of

y(t) relation (14) may be written in the form

$P, IYYfl KCP (,,,4g ... ) () , a,,...], (16)

° - where

ij..j ,,. , .... )1I,()I,.. u....J d,,d6...." (17)

Besides the a-priori parameter distribution expression (16),

which is used in obtaining the optimum estimates, contains the proba-

bility ratio X[y(t) all, a2, ... ]. If the role of the a-priori infor-

mation is small compared to that of the information obtained by the

experiment the estimates are essentially determined by the probability

ratio. Thus, the solution of the problem of measurement, as well as

that of detection, proves to be substantially connected with the pal

culation of the probability ratio.

We note that in the derivation of the relations (7) and (16) the

i presence of unmeasurable random signal parameters was not taken into

jaccount. The presence of these parameters changes the dependence of
Peu(y.,, y2 ....) , but has no influence on the form of the final formulas.

In this case, it is only necessary to calculate the conditional prob-

ability density Pc,(.i,,,...) and the probability ratio in a somewhat

more complex manner as will be shown in the third chapter.

In the third chapter we shall calculate the probability ratio

"-1 under various assumptions on the unmeasurable random parameters. The

measurable random parameters are always asumed to be fixed, in thisI - 68-
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chapter (such that they will not be discussed). The dependence of the

probability ratio on these parameters will be analyzed in the follow-

ing chapters.

Manu- F
script [Footnotes
Page
No.

40 We do not take account of an additional phase modulation
if the antenna is rotated. This is only correct in the case
where the axis of rotation passes through the "phase center".

41 Thus, a continuous variation of conditions (e.g., the scan-
ning rate of the antenna beam [10]) as a function of the vol-
tage at the receiver input is not considered.

52 Various methods of designing multiplying circuits are known,
One of these methods consists in obtaining a voltage differ-
ence at th output oftio diodes with quadratic characteris-
tics and n under the condition that the half sum and the
half difference of the multiplied voltages are, respectively,
fed to either of them.

[Transliterated Symbols] A
56 maKc = maks maksimal'nyy = maximum

56 mmH = mn = minimal'nyy = minimum

65 cnT = opt = optimal'nyy = optimum

66 Aon = dop = dopustimyy = admissible

59 cn sp = signal s pomekhoy = signal with interference
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. Chapter 3

U€

THE PROBABILITY RATIO FOR THE FUNDAMENTAL RADAR SIGNAL

MODELS IN THE PRESENCE OF FLUCTUATION NOISE

IN THE FORM OF 1i.ITE GAUSSIAN NOISE

§3.1. THE PROBABILITY RATIO FOR A SIGNAL WITH COMPLETELY GIVEN PARA

The simplest example of calculating the probability ratio refers

to the case where the expected signal x(t) has no unknown parameters.

In this case, the received oscillation y(t) differs from the random

noise oscillation by a given function under the condition of presentS signal and interference

y (t --n (1) 4'" :- (t).

The discrete values yk corresponding to this oscillation satisfy the
i equations

where xk are given quantities (discrete values of the signal); k = 1,

2,

This implies that the presence of a signal shifts the distribu-

tion of the values Yk relative to the case where only the interference

is acting and yk = nk. In analogy to relation [(5) §1.5] we may

write Pox (Y,, y,,. Pa.) pI @-, X1, -x,,....
(1)

Thus, tle probability ratio for a signal with completely given

parameters can be represented in the form

Pa ,s V. t. (2)
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In order to calculate the probability ratio, the dependence of

PO(YI. Y2, ...) , i.e., the total distribution law of the discrete in-

terference values must be established.

The following assumptions were already made on the interference:

1) The interference is a fluctuation interference and its in-

stantaneous values are distributed according to a normal law with

an average value equal to zero.

2) The interference is stationary, i.e., its statistical charac-

teristics are constant in time.

3) The interference belongs to the quasiwhite noise with a uni-

form spectrum in the frequence band O<f<fjMac (in the following,

the passage to the limit o..c- oo is intended).

It follows from the first assumption that the probability density I
of any discrete value of interference is equal to 1

j2i

where n2 Ok is the dispersion; k 1 1, 2,

It follows from the second assumption that the dispersion of the

interference is equal for all discrete values: n20 = n2  iOk O"

It fol±ows from the third assumption that the correlation func-

tion of the voltage of this noise for a resistance equalto unity is

described by the expression [(9) §2.3] for ,-0 , i.e.,

sin t u.a.. 1)

Putting the interval T times the time discretization interval

we obtain using Kotel'nikov's theorem A=
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R(h)NJ.~M 1 0 for M
/ m.aNJgp# for m --O.

This implies that discrete values Yk with different numbers are uncor-

related random quantities and that the dispersion of these quantities

is equal to the product of the spectral noise density and its spectral

width " R(0)=NJ,.,c.

(3)

Using all three assumptions we can write the manydimensional

distribution law in the following form:

.P .(Y, P (YS). ..

2V,. Fin V, J
where n2 = Nofraks. Substituting the obtained expression in formula

(2) we have
fg-:._. _p _(,-x,_ __I! A,2

Rewriting formula (4) and replacing in it n0 =omks =/2At, we

obtain

1(y,, y,, _)= e• - e• (5)

Expression (5) determined the sought probability ratio for a sig-

nal with completely given parameters and an interference in the form

of quasiwhite nioise. It permits a simple limiting transition± to the

case of white noise if f.,,--oo, and A--0 . In this case, the sun

in the exponent of the first factor goes over into an integral that

is numerically equal to the energy of the expected signal

imx. = fx(1)d=a.(6)
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and the sum in the exponent of the second factor goes over into the

integral

lim xAyAkt= S xt)yg(1) dl,

which will be termed correlation integral in the following.

Thus, the final expression for the probability ratio can be given

in the following form:

l=1[y()J=e N. e', (7)

where NO is the spectral noise density; 3 is the energy of the ex-

ected signal and z is the correlation integral
z-- .(1) y (t) dt= z ly (f)] (8

(8)

§3.2. THE PROABILITY RATIO IN THE PRESENCE OF UNMEASURABLE RANDOM

PARAMETERS

Let the total oscillation

y n +x(t,,,...

be received under the condition of present signal and interference.

We shall consider the total probability density of the discrete

valyes Yk of the received oscillation and the unmeasurable random pa-

rameters Pi. The considerations are made on the assumption that the

measurable random parameters are fixed. According to the multiplication

theorem of probabilities we may write
P U ,, ,-.,. , P S....-) -'-

= "- (y,, Ye, ...)p (Pig p ...I y,, , .... ) l

-- P(P, PS,- -) P@, (y,-.., lP1. P,,..)

On integration of an absolute or conditional probability density

within infinite limits we always obtain unity, in particular,
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Consequently, we obtain as a result of the integration (1)

p.,, ,,..)-.

P (Va.VaFit.

. P ,(2)p(),,y, .... I o,, )dpldp,... .

According to the condition P(Yt, Y2,... i)-Pn(, Y2....) represents the pro-

bability density of realizing the values yk in the presence of signal

and interference. Dividing both sides of Eq. (2) by the probability

density of the same values Yk in the presence of the interference

alone Mva, yz...) , we shall obtain the sought expression for the

probability ratio

S.. ' PaF (Ms .... )•

The divisor may be written under the integral sign since it is inde-

pendent of the variables of integration. The quantity

pus i .* 4vS

is a special value of the probability ratio for fixed values of the

unmeasurable random parameters. In other words, this is the probability

ratio for a signal with completely given parameters.

Hence it follows that the sought probability ratio is obtained by

taking the mean of its special values over the unmeasurable random

parameters:

- .pP ,P,.. t(y, . ...... lPu *.. )djdP,... (3)

or

IlY(1)l = jS ... p(p,i Pa,...11) pt SI # O,...dpidpe.. -so

According to the results of the preceding section

pmev(e)P,, o,...l-e e o (5)
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where

9(p,, Pg...)-~= S s,, psi ... )dl

-" (6)

and

z Y(1)IY,,. PS.. .=- X(t, 1' ,p .... )v )dI.

Finally we have then

rr -[~(t I'" PI.. N.. I
-- ...Pp ,,, ..)e" e ' " d ,d ,..

§3.3. PROBABILITYRATIO FOR A SIGNAL WITH RANDOM INITIAL PHASE

As to the degree of complexity, the next model after the signal "I

with completely known parameters is, as was already remarked in §2.2,

a signal with random initial phase

x(t, )X (Q)cos [0.t -+,(? . (1) + P.

It is also just this signal that may be regarded as the simplest ex-

ample of an application of the general relations of the preceding sec- A

tion.

We consider the initial phase to be distributed uniformly in

the interval from 0 to 2w with a probability density of p(p) = 1/2w.

In order to apply the general formula [(8) §3.2], it is, first

of all, necessary to calculate the correlation integral and energy

for a fixed value of the parameter 8, making use of the relations

[(7) and (6) §3.2].

Using the formula of the cosine sum , we obtain from (1) that

x, P)=X()cos -+v ('] cos -

- X (1) sin [.;. y, (I)1 sin p.

Introducing the designations

X,()=X()O .)[14..(I), (2)
x2 ) X (t) s in +., t I]
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we find

. , 'The correlation integral can then be written

I~

- - -. ( 4)

whe re

x , (1) y (dt z, jy (1)1;

Introducing the quantities Z and 0, determined by the relations

Zz 1 ., (6)

ccs9o= t  1 (7)
- I/

we shall finally write the expression for the correlation integral

in the form .

z j(t1P)-Z [cos cose +sin P sin el =z cos (P - 0).

We shall now obtain the energy of the signal .(9) . If its os-

cillation amplitude X(t) and phase px(t) vary only slightly during

each high..frequency oscillation period, the energy is practically in-

dependent of the initial phase p such that

a (P) X8 X' ) coss' (. + d (+ P1 dt .

X* (t d)a

We may now pass over to the calculation of the probability ratio.

Using formula (8) of the preceding section we obtain

L=e _-e..
0

We remember that

-76-



is a zero-order modified Bessel function (Fig. 3.1). t

Thus we have for a signal with random initial phase

, !

II

isazr-re oiidBse fucin(Fg .)
1I-e (10)

where the value of Z is determined from the relations (5) and(6.'

f -

Z 4:

Fig. 3.1. Diagram
of the zero-order
Bessel function.

§3.4. PROBABILITY RATIO FOR A SIGNAL WITH RANDOM AMPLITUDE AND RANDOM

INITIAL PHASE

The model of the signal with random amplitude and random initial

phase is written in the form

x (t, i, B) = X (t) co le+ T (t +r .(1)

Assuming the initial phase to be equally probable within the A

limits of 0 to 21r and the coerficient B distributed according to Ray-

leigh's law with a root-mean-square value equal to unity the probability

density of the quantities P and B may be written in the form

) 2BeB 6- (2)
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where B > 0.

Let us pass over to the calculation of the correlation integral

and the energy ,(P, ) for fixed values of the parameters

" and B. In analogy to the way in which this was done the preceding

section we may obtain

[M P. ~BIBZ cos(P -) ()

* and

9(PB) B1.9 (4)
where the expressions for Z, e and 3 are the same as in §3.3. It

is easy to see that in contrast to the preceding case the energy

9( ,B) depends on the random factor B. Its mean value is equal to

= B)p(0, B)d=3 S28'CD'dB= (5.)
0

i.e., to the energy of the signal for the special value B =l.

Using the general formula. [(8) §3.2] we obtain

1=-LdB;Be- e' eeN do.

By virtue of Eq.[(9) §3.3] and Eq. (4)

1 2 Z e . BdB.

Usling the tabulated integral

.It ,(p.)- eO, (7)

we obtain
I'l

.--: --- --.,, ,(8)

where the value of Z is deteimined from the relations [(2), (5), (6)

§3. 3.].
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§3.5. PROBABILITY RATIO FOR A SIGNAL IN THE FORM OF A RADIOPULSE

PACKET WITH RANDOM INITIAL PHASES

The model of a signal in the form of a pulse packet with random

initial phases is described by the relation

We assume the pulse amplitudes to be nonrandom and the initial

phases k to be independent random quantitites each of which is uni-

formly distributed within the limits from 0 to 27r. The total probability

density of these quantities is described by the relation

POPit , = ,)p@ .) ...,(2-) I(

where

J(3)

Using the cosine sum formula as in §3.3, expression (1) may be

written in the form

, it P, ll,. )= .:,,()C0 i 1,-- , (03,ln pi, (4)
where (c.(

(6)

11(z. Cos p%+z sin pi).

where
* ea

z, - [ x, (t) y() dt° ,

-z, -- .S xh(t)y(t)d1.
id

With the denotation

- 7'9 -
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expression (6). as in §3.3, may be written in the form

(7)

On the assumption that the packet consists of nonoverlapping pul-

ses its energy can be determined as the sum of the energies of the in-

dividual pulses. Assuming the amplitude and the initial phase of each

,pulse to vary only slightly during a high-frequency oscillation period

we obtain

h * A (8)

where aA, is independent of the random initial phase "

To calculate the probability ratio we use, as before, the general

formula [(8-)§3.2] which by virtue of Eqs. (2), (7), (8) may be writ-

ten in the form of a product

i= H . W je N. d .

On integration we obtain according to formula [(9) §3.3

(9)

It is easy to see that the probability ratio for a packet of non-

overlapping pulses with random independent initial phases is determin-

ed as the product of the probability ratios for each pulse of the pack-

et.

§3.6. PROBABILITY RATIO FOR SIGNALS IN THE FORM OF A PACKET OF RADIO-

PULSES WITH RANDOM AMPLITUDES AND INITIAL PHASES

For the model of a signal in the form of a packet of nonoverlap-

ping pulses with random amplitudes and initial phases we have
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__='S B X( (ct) [os e ( + P1i. ()

In this case, we shall restrict our considerations to two limiting

cases:

a) the case of independent fluctuations where

p(Pit P, . ,, B , .... ) p (Pit P .. .p (B) p(B )... (2 )

b) the case of friendly fluctuations where
p(3) ( B

= (P...) 8(B.- 8 ) (B, - B) ... p(B).. (3

In the first case the aplitude factors B1 , B2, ... are indepen-

dent random quantities. In the second case they are identical random

quantities, i.e.,

B,=B.= ...=

[if they were not equal at least one delta function in the expression p
(3) would btcome zero]. As to the distribution function of the initial

phases p(pl3 2 "'"), it can be chosen equal to that in the preceding

section [formulas (2) and (3) §3.5]. The quantities B1 , B2, ... in

(2) and B in (3) are assumed to be distributed according to Rayleigh's

law
p(B)=2&e- B (4)

In analogy to the corresponding relations of the preceding sec-

tions we may write for the case of independent fluctuations

z 1p, P,,..., B1, B,,...= B Z cs (, - 0). (5)

(6)

where 3# is the mean energy of the kth pulse of the packet.

Substituting the relations (2),, (4), (6) into the general formula

[(8) §3.2] we obtain

-81-
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Is 0

The same transformations as in the derivation of Eq.[(8) §3.4]

may be carfied out for each factor of the obtained product. For the

case of independent fluctuations of the packet pulses we then obtain,

finally,

FI Z2. 1.

For the case of friendly packet fluctuations we may obtain, sim-

, ilarly at c.(+.z

1=258 (21 ,6
(8)

where 31 is the mean packet energy

kh

The formula for the probability ratio is considerably simpler for

independent packet fluctuations (7) than formula (8) for the case of

friendly fluctuations.

We must note that formula (7) is not only applicable to a packet

of pulse signals nonoverlapping in time, but also in several other cases.

It is also correct in the case where the signal overlap, but have

nonoverlapping spectra, and their fluctuations are independent. In sev-

eral works on radar these signals are recommended Tor reducing the in-

fluence of target fluctuations (the case that signal fading on one of

the carrier frequencies will be accompanied by fading on another fre-

quency is not very probable if the frequency separation is great enough).

It is easy to see that the calculaticns carried out will remain correct

also for the aforementioned class of signals if in Eq. (1) the phase

cni+fPh() is replaced by W,t+,;j'L) In this case, also Zis. (5), (6)

j - 82-
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and, consequently, also Eq. (7) will remain valid.

Manu-
sc rip-U [Transliterated Symbols]Page

No.

70 cn = sp = signal s pomekhoy = signa]. with interference

70 n = p = pomekha = interference

71 MaiKc maks = maksimal'nyy = maximum.

8
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Chapter 4

. THEORY AND PRINCIPLES OF DESIGNING DEVICES FOR

OPTIMUM DETECTION AND MEASUREMENT OF PARAMETERS1 §4.1. GENERAL CONSIDERATIONS CONCERNING THE CONSTRUCTION OF DEVICES

FOR OPTIMUM DETECTION AND MEASUREMENT OF PARAMETERS

As shown before, the problem of optimimn detection may be solved

in the following way: the probability ratio for the received oscilla-

tion y(t) is calculated; it is then compared with some threshold 10'

whose value is determined such that the probability of false alarm F

does not exceed an admissible value F dop . Not only the probability

ratio, but also any quantity connected monotonically with it can be

compared with the threshold. The calculations of this quantity may be

automatized or not, but it is just the automatized calculations rea-

lizable by means of optimum receivers that are most interesting for

present-day radar.

The situation occurring in the solution of the problem concerning

optimum measurement of parameters is analogous. An optimum receiver

must calculate the a-posteriori probability density [(16) §2.7] or any

quantity connected with it monotonically as a function of the possible

values of the measurable parameters. As a result, some uptimum esti-

mates, e.g., the most probable estimates corresponding to the maximum

of the a-posteriori probability density must be worked out. The optimum

measurement devices must carry out the calculation. of these estimates,

depending on the high-frequency oscillations entering the input of the

receiver, in which case it is desirable to carry out these calculations

84 -
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I automatically.
The purpose of this chapter is to consider the possibilities of

synthesizing detection and measurement - revealed by theory.

The values of the probability ratios obtained in the preceding chapter

for fundamental signal models in the presence of an interference in

the form of white Gaussian noise will be the starting point in the

synthesis of these devices.

§4.2. SIMPLEST CORRELATION CIRCUITS OF OPTIMUM RECEIVERS

To start with, we shall consider the problem of synthesizing

optimum receivers as applied to detection devices for the three simp-

lest radar signal models: a signal with completely given parameters,

a signal with random initial phase and a signal with random anplitude

and random initial phase. The probability ratios for these signals read, -J

respectively:

82Z

--N~ (2)
I Z'

= -N.. (3)

Here

Z-= x (l)y(l)dt,(

4- .+i.(5)

where, in its turn,

,.a () (1)d1, (6)

and

tco'* +
- sin
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For a signal with completely given parameters the probability

ratio (1) is a monotonic function of the correlation integral z to be

determined from relation (4). The comparison of the probability ratio

with the threshold X0 is equivalent to the comparison of the correla-

tion integral with the corresponding threshold zo, which is illustra-

ted by Fig.1.7, except for the designations.

Fi.41 Stutua diaga of the"simp-

Fig. 4.1i. Structural diagram of the simp-

lest correlation detector. A) Multiplier;
B3 integrator; C) threshold device; D) if;Eif.

ly Thus, the device for optimum detection of a signal with complete-

ly given parameters must calculate the correlation integral (4) and

compare it with the threshold zO.

Figure '4.1 shows the structural diagram of such an optimum detec-

tor. It consists of a multiplier, an integrator and a threshold device

j (a minimum limiter). A reference oscillation x(t) corresponding to the

expected signal and the received signal y(t) are fed to the multiplier.

Immediate integration of the product x(t)y(t) yields the correlation

integral. Such a receiver is termed a correlation receiver. The value

of the correlation integral is compared with the threshold z0 in the

limiter circuit. The threshold level is chosen such that if there is

no useful signal the probability of exceeding the threshold (the prob-

ability of false alarm F) is not greater than the admissible one.

For signals with random initial phase and signals with random

amplitude and initial phase either of the probability ratios [(2) or

(3)] is a monotonic function of the quantity Z 2+Z2 .Z are

here the correlation integrals to be determined from Eq. (6). Thus, in
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these cases the optimum detector circuit must calculate the correlation

integrals zI and z After the 'T operation the comparison of

the obtained quantity Z with the threshold z0 which is chosen by the

same considerations as in the first case must be made. Figure 4.2 shows

the structural diagram of the corresponding device. The oscillations

xl(t) and x2 (t), which are phases shifted by 900 are fed to its multi-

pliers as reference vibrations. In radio engineering such oscillations

are usually called quadrature oscillations. Consequently, also the dia-

gram shown in Fig. 4.2 may be termed correlation diagram with two quad-

rature channels.

Fig. 4.2. Diagram of a correlation detec-
tor with two quadrature channels. A)
Threshold device.

The existence of two channels excludes the possibility of losing

the useful signal owing to the fact that its initial phase is unknown.

If, e.g., the useful signal does not yield an increase of the correla-

tion integral in the first channel on account of a phase shift by 90*

relative to the reference voltage, it certainly yields an increase of

the correlation integral in the second quadrature channel. As can be

seen from the expressions (5)-(7), the result of reception in the pre-

sence of two quadrature channels is independent of the random initial

phase. It is remarkable that this rule is taken into account by theory

on the basis of general considerations on the optimum way of process-

ing, without previously analyzing the circuit solutions.

The circuits (Fig.4.1 and 4.2) are only optimum if the position of

- 87-
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r the expected signal on the axis of time is known. The case where the

delay time of the signal is unknown was not analyzed here in detail

owing to difficulties of computational character. An answer to the prob

lem whether a signal with unknown delay time is present may, however,

be given if the fact of presence or absence of this signal is estab-

lished for different values of the delay time, the interval between

which does not exceed the corresponding resolving power. Hence we can

apply a multichannel correlation circuit in which each channel or each

*pair of quadrature channels is calculated as to its d-.', 4ime (Fig.4.3).

Multichannel correlation circuits may be used co receive signals dif-

fering not only by the delay time, but also by their carrier frequency

(e.g., on account of the Doppler ef'fect).

We have to note that the reception of sig-

t it' nals with arbitrary time delay is particularly

As widespread and important in radar. The fact

r--  that a correlation reception circuit must have

L_J a great number of channels for scanning the

whole range proves to be its drawback. In the
ill following sections we shall familiarize our-

fl Fig. 4.3. Princi-
pie. of' co nct- selves with the circuit of optimum receptionple of construct-

ing a multichan- permitting optimum detection in a wide range ofnel correlation
circuit. delay times using one receiving channel.

§4.3. USE OF OPTlIUM LINEAR FILTERS IN THE CONSTRUCTION OF OPTIMUM RE-

CEIVERS. PULSE RESPONSE OF THE OPTIMUM FILTER.

We require that a circuit element of optimum reception should com-

pute the correlation integral for arbitrary delay time of the expected

signal
' (1)

where u(t) is the function describing the signal with vanishing time de-
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lay. We shall assume that this function is completely known.

In this case the correlation integral is not only a function of

the realization of the received oscillation y(t), but also of the delay

time of the expected signal. i.e.,

l= z Iy(01)t (2)

or, rewriting it in a slightly different way. iF
l(ou-1.)t. (3)

Thus, a circuit realizing the mathematical operation (3) for an

arbitrary given function u(t) and an arbitrary parameter tz must be '1,
designed. iA

Fig. 4.4. Explanation of Pulse re-
sponse Determination. A) Filter.

It is easy to see that Eq. (3) is a convolution integral. It is

wellknown from the theory of linear electric circuits that the convolu-

tion integral expresses the voltage at the output end of the linear

filter. Consequently, in order to carry out the mathematical operation

(3) it is also possible to use a filter which yields a convolution in-

tegral of the required form. In the following such a filter will be

called optimum, since it carries out the basic operation of optimum pro- b

cessiii, - the calculation of the correlation integral.

One of the fundamental characteristics of an arbitrary linear fil-

ter is its pulse response, or weight function, v(t). It is wellknown

that the pulse response describes the reaction of the system on an in-

put voltage in the form of a single pulse 6(t), supplied at the instant

of time t = 0 (Fig. 4.4). Of course, the pulse response assumes values
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STVdifferent from zero only at t > 0, since the effect cannot precede its

cause.

The reaction of the filter on an arbitrary action y(t) is given

as the convolution integral of the function y(t) and the pulse response

v(t)

The derivation of relation (4) is illustrated by Fig. 4.5. The

action of the oscillation y(t) at the instants of time from s to s + ds

is equivalent to the input of a very short pulse with an "area" of

y(s)ds. The reaction on this pulse at an arbitrary instant of time

t > s is equal to v(t - s)y(s)ds and zero if t < s. Using the super-

position principle we obtain

W(t)-- VY-SlYOds

and

0
0=5 (17 s)g0(s) ds.

Summing up these expressions terms by term we obtain Eq. (4).

As follows from Eq. (4), the

yfd, voltage at the output end of the fil-

ter at an arbitrary instant of time t

depends not only on the supplied vol-

tage y(t), but also on the pulse re-

,. , -sponse v(t).

In order to determine the pulse

response of the optimum filter we

Fig. 4. 5. Explanation con-
cerning the calculation of shall require that the voltage at its

the voltage at the output
end of an optimum filter, output end at the instant of time

t = tz + to (to is some constant va-I - 90 -

g2go
N



lue) except for a real factor C should be equal to the value of the co-

rrelation integral, i.e.,

w(t,+)=Cz .). (5)

This requirement boils down to the demand that the values of the

correlation integral should be reproduced at the output end of the fil-

ter one after another with some constant delay to. In this case, the

use of the time base permits the fact of exceeding the threshold level

to be determined for any delay time of the signal. The greater the de-

lay time, the later the correlation integral will be formed. This cor-

responds to the picture usually observed on the amplitude marker when I
the signal from the target is placed at a distance from the base head

that grows with the distance from the target. 1;
By virtue of Eqs. (3), (4) and (5) we obtain

u(tg+ - s)y(s)ds=C u (s -t14y(6)

Eq. (6) is identically fulfilled if

v U + -s)= C s-,). (7 )

Introducing a new independent variable t t + to - s, we obtain

the final expression for the pulse response of an optimum filter

V Wt)=V041 Mt- =cu (t.- t). (8)

where C and t0 are constants to be determined by its parameter's.

At any instant tz + tO such a filter yields the value of the cor-

relation integral z(tz) at the output (except for a factor C), i.e.,

it may serve as the sought element of the optimum reception circuit.

Expression (8) shows that the pulse response of the optimum filter

is obtained from the function u(t) describing the signal with zero time

delay, by replacing its argument t by tO - t. Such a transformation co-

rresponds to a mirror reflection of the function u(t) relative to the

straight line t = to/2. The latter is easy to verify if in Eq. (8) the
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substitution of variables t = to/2 + is carried out. In this case,

Eq. (8) may be rewritten in the form

vea, (cu(12-

which attests to the fact that the transformation (8) is a mirror re-

flection relative to the straight line to/2. As follows from all these

considerations set forth, the mirror pulse response of the optimum fil-

ter guarantees the best signal detection on a white Gaussian noise

background.

Figure 4.6 a, b, c, d, illustrates the considerations made above.

In particular, Fig. 4.6a shows a signal With definite delay time x(t) =

u(t - t3 ) as superposed on fluctuation noise. The wider the frequency

band in which the noise is acting the greater is its dispersion. For

white noise the dispersion is infinite. Consequently, the figure shows

j a noise whose spectral width is about the same as with the useful sig-
• nal.

Figure 4.6b shows a signal u(t) analogous to a useful one but with

zero delay time and without noise. Figure 4 .6c shows the corresponding

pulse response at C = 1. The values of the pulse response and the sig-

nal for points on the time axis lying on opposite sides of to/2 at a

distence of the same magnitude coincide.

Figure 4,6c shows the result of optimum filtration as a functi.on

of the time t. It was calculated with the help of formula (4) under the

condition that the pulse response v(t) is determined by Eq. (8), i.e.,

that

(C ,t+,)v(,ds. (9)

'I In this case

w~ta4)= u S(s - 1) (s) ds=CZ(I
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i The envelope of the useful signal oscillations at the-output end
of the filter (in case there is no noise) is shown by the dotted line

in Fig. It 6d.

q't" t).nft) '2(t) 1

stt

L J II -- --- --'

a ..

b

(fit)

Fa'S

dr n
rwft) a,, nIt).u

Fi.J.. xlntion of', the

determination and the principle of action
of an optimum filter, a) Total voltage y(t) of noise and useful signal
at the input end of the filter; b) expected signal u(t) with zero delay
time; c) pulse response v(t) = vopt(t); d) total voltage w(t) of noise

and useful signal at the output end of the filter. A) At.

In this case, the maximum corresponds to the time tz + to.
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The noise distorts the useful signal. Thus, the total voltage of

signal and noise at the output end of the filter w(t) at the instant of

time t = tz + tO will not be maximum, in all probability. The value of

w(t z + to) = Cz(tz), however, always corresponds to the value of the

correlation integral for a given signal with an expected delay time

tz . This value appears the later the greater the value of t0 which, in

this way, characterizes the delay of oscillations in an optimum filter.

It can be seen from the figure that after the filtration (Fig. 4.6d)

the separation of the signal from the noise background is better than

before the filtration (Fig. 4.6a). The difference will be still more

remarkable if the interference acts in a wide frequency band, similar

to the white noise model.

le must pay attention to the constant quantities C and tO which

enter Eq. (8) for the pulse response. They permit the demands which must

be fulfilled in the realization of optimum processing of the received

oscillations with the help of a filter to be taken into account.

As a matter of fact, if the signal. amplitude is small the transfer

constant of the circuit must be chosen to be great, which is allowed for

by a factor C 7 1 in relation (5). At the same time, the corresponding

leyel of the limiting threshold must be determined in order to guarantee

the given probability level of false alarm.

Furthermore, a filter cannot be realized by choosing the value of

tO in an arbitrary way. By way of example, for the si'gnaJ u(t) (Fig.

4.6b) at tO = 0 the pulse response of the filter v(t) will lie, in the

region t < 0. Such a response cannot be realized.

Thus, the value of t0 must be chosen such that the values of the

pulse response v(t) different from zero lie in the region t > 0. Hence

it follows that the duration of the delay in an optimum filter to can-

not be shorter than the duration of the signal i.
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§4.4. SIGNAL-TO-NOISE RATIO AT THE OUTPUT END OF AN OPTIMUM FILTER k

Owing to the linearity of the filter the voltage at its output

end is the sum of the results of the independently acting voltages of

the useful signal x(t) and the fluctuation noise n(t). As a matter of

fact, carrying out the substitution

(S)--n(s)+U(s .), (1)

in Eq. [(9) §4.3] we obtain

W (W = we (1) + W, (W. ( 2)

where

W()=C 5 u(.-t+s)u(s-)ds, (3)

w11()=C Su(1-t + s)n(s)ds. (4)

The voltage of the useful signal ws(t) is a nonrandom function of

time. This function attains a maximum at t = tz + t o (Fig. 4.6d, dot-

ted line) if both factors of the expressicn under the integral sign in

Eq. (3) are identical functions superposed -'. time, In this case, the

value of the maximum proves to be ,proport . xal to the energy of the

expected signal and independent of its form:

Go V(

wo(ta+t._)=C u'(s-ta)ds=C-=wwmaKe. (5)

We may, by the way, conclude from this fact that the instant t. +

+ to of reading off the correlation integral from the output voltage is

quite justified. The correlation integral is read off at the moment of

maximum expected voltage of the useful signal at the output end of the

filter.

This noise voltage wp(t) is a random function of time. Its mean

value is equal to zero since n(s) = 0. In fact,

w,(I)=c Ju(t.-t+s)n(s)ds=0. (6)
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The noise dispersion is, therefore, equal to the mean square of

the voltage w (t):

Replacing the square of the integral by the product of two iden-

tical integrals with different variables of integration and passing

over to a double integral we obtain

..-) zC' Sa(-+s)ds J ,(.-t+r)n(s)n(r),' . (8)

For a stationary interference n(t) with a mean value equal to zero

the value of the product n(s)n(r) is a correlation function of a dif-

ference argument

u(s) n (r)= R (s - r).

As to an interference in the form of white noise with a spectral

density NO we have by virtue of Eq. [(2) §2.4]

N. _F's (r) s- -r). (9)

Substituting expression (9) into (8) and using the general proper-

ty of integrals with delta functions

(r) & (s-r)dr =(s).

we obtain

3. 2 J M  +sTd;=C '. (10)i -
The effective (root-mean square) interference voltage wp ef is,

thus, equal to

C 2 (1

The ratio of the maximum value of the signal to the effective va-

lue of the interference ws maks/Wp ef is called signal-to-noise voltage

ratio. Its value is found with the help of Eqs. (5) and (11),
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It is characteristic that the signal-to-noise voltage ratio at the

output of the optimum filter depends only on the energy of the useful

signal a,d .the snctral noise density N and not on the form of the

signal. The same holds for the signal-to-noise power ratio

S2  N* (13)

There is no filter which can yield a greater signal-to-noise ratio

than the optimum filter. In fact, let us assume that such a filter ex-

ists. In this case, putting it before the threshold circuit instead of

the optimum one a greater probability of correct detection D can be

obtained if the probability of false alarm F is given. But it is just

the optimum receiver that yields the highest proability D for a given K

probability F. This implies that also the optimum filter of this re-

ceiver under givenf conditions yields a signal-to-noise ratio which is

the highest compared to other linear filters.

§4.5. FREQUENCY CHARACTERISTIC OF AN OPTIMUM FILTER

Besides the pulse-response characteristics of filters the use of

their frequency characteristics is very widespread. The frequency

characteris.cs are particularly convenient if signal filtration from

noise by mea~s of resonance oscillatory systems is considered. But

they can als be used in other cases.

The frequency characteristic K(f) of a linear circuit (in complex

form) is determined in the following way. We assume that a harmonic

oscillation

is fed to the input end Of the circuit.

In this case, the voltage at its output must be equal to
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t)=K(I) e"'. (2)

Or, the frequency characteristic is, by definition, the relation

1W) (=S) for (1) (3)

Substituting expression (1) into formula [((4) §4.3] for the vol-

tage at the output end of the filter and replacihg w(t) according to

formula (2) we obtain

-metht"- vt. s) e"*I'd.

Dividing both sides of the equation by the factor e/"1 ' and car-

rying out the substitution of variables t - s = T, we find an expres-

*sion for the frequency characteristic in terms of the pulse-response

characteristic:

Go
K(h= j ,(.)e-.r,%dc. (4)

Equation (4) shows that the frequency characteristic is the

Fourier transform of the pulse-response characteristic.

Making use of relation (4) we find the frequency characteristic of

the optimum filter. In view of

Von?(Y)=CU (to.- 0.

we obtain

K.e. (f)- =C u u (1-) e-1' 1 'd%.

Carrying out the substitution of variables t 0 - = t, we Oind

K0.()= C ? u(t) el"hd''..  (5)

Hence it follows that the frequency characteristic of the optimum

filter Kopt (f) will be

K,, () = Cg (f) e". (6)

Here C and t0 are real constants (as also in §.3), g*(f) is the
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- ii
complex ronjugate value of the spectral density g(f) of the expected

signal u(t),

g'(f)= u (te-1.%"dt.()

The expressiong*(f) differs from expression (7) only by the sign

in front of the factor _ in the power exponent.

We shall pass over to a more detailed analysis of relation (6) de-

termining the frequency char cteristic of an optimum filter.

Evidently, this characteristic is described by the complex conju-

gate spectral density g*(f) of the expected signal u(t), except for an

arbitrary real factor C and the delay factor 6-1210 .

We shall rewrite the spectral density of the expected signal in

terms of its modulus and its argument

g g(f)(i "' , (8 elsr

where Ig(f)l corresponds to the amplitude frequency spectrum of the ex-

pected signal, and arg g(f) to its phase-frequency spectrum. Obviously,

i.e., in the conjugate spectrum the modulus is the same, but the argu- F-

ment has the opposite sign.

Substituting expression (9) into formula (6) we obtain

K. (1) = C Ig (1)1 -,ar '" (10)

Taking the modulus and the argument of both sides of Eq. (10) it

is possible to go over to the amplitude-frequency and the phase-fre-
quency characteristics of the optimum filter, respectively.

To start with, we shall deal with the modulus. Noting that

SIia=I i.we obtain

IKORT(flI=C1(f)i. .l)

This implies that the amplitude-frequency characteristic of an op-
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tinum filter is proportional to the amplitude-frequency spectrum of the

expected signal. An optimum filter must, therefore, be most purmieable

for those spectral components which are most distinctly expressed in

the spectrum. Weak spectral components of the signal are suppressed by

the filter since in the opposite case besides tbpm intensd noise compo-

V nents would pass through in a wide frequency range. The shape of the

amplitude-.frequency spectrum at the output end of the filter is distort-

* ed, which is one of the reasons for the listortion of the signal (e.g.,
\7*

*Fig. 4.6d). The problem of filtration in the given case is, however,

the best discrimination of this signal on the noise background rather

than an exact reproduction of the signal shape.

Taking the argument of both sides of Eq. (10) we obtain

arg Ko, (1) = - arg g(f) 24t,. (12)

Equation (12) shows that the argument of the frequency characteris-

tic of the optimum filter is the sum of the argument of the expected

jj signal spectrum, taken with the reverse sign, and the argument of the

dea -27rft O. Such a choise of the phase-frequency characteristic is,
obviously, very valuable from the viewpoint of guaranteeing an optimum

filtration effect.

In order to convince ourselves of this fact, we shall express the

signal component of the voltage at the output end of the filter in

, terms of the corresponding frequency characteristics. If a uzeful sig-

nal u(t - t.) enters the input end of the filter, and the spectral

density of the function u(t) is equal to g(f), the spectral density of

the signal u(t - tz) will be g(f)e - j2 ftz, according to the delay the-

orem. The corresponding spectral density at the output end )f 'tht l-

ter is equal to

K -(f) g -
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and the voltage of the useful signal at the output end of the filter at ijj

an arbitrary instant of time t will be

we M f Ko3 , (n g (f) e-2"-1 e"1'df. (13)

according to the superposition principle.

Substituting here instead of Kopt(f) its expression (10) we obtain

the relation

w .(e = c I g (f) I3 eI'* -f - f, (1 )

which is the spectral analog of the preceding expression [(3) §4.4].

Using the Euler formula and the oddness of the function sin[27r.f(t - tz

- to )], we find finally,

w()C I ~g (hiscos [2%f ( - is- Q1 df.

It is evident from the expression obtained that the voltage at

the output end of the filter, which is a superposition of narmonic com-

ponents of different frequencies, is determined by the amplitude-fre-

quency spectrum of the signal. It does not depend on the phase-frequ- :j

ency spectrum since the latter is compensated by the phase-frequency

characteristic of the filter. Consequently, all harmonic components

simultaneously attain the amplitude values at the instant of time t =

z  to, and these values are superposed on each other (Fig. 4.7). At

this instant of time tne voltage maximum of the useful signal at the out-

pu end of the filter

0 m-oa (e-o + .)C I (iI 2df.

occurs.

By virtue of Parseval's theorem
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i.e., this maximum is determined by the value of the energy of the use-

tul signal

we UaKO C3.

It is easy to understand the results of deviations from an optimum

phase-frequency characteristic. If the latter does not compensate the

phase shifts, the maxima of the harmonic components (Fig. 4.7) will

move apart, and the peak of the total oscillation of the useful signal

will begin to fade away. This fact aggravates the conditions of dis-

criminating the signal on the noise background.

" "a

t.t #to

Fig. 4.7. Superposition of the maxima of the useful signal's harmonic
components at the output end of the filter in the case of an optimum

- •phase-frequency characteristic.

§4.6. APPLICATION OF THE METHOD OF ENVELOPES IN THE ANALYSIS OF THE
OPTIMUM FILTRATION PROCESS

0 In the case of high-frequency oscillations with slowly varying am-

plitude and initial phase the relations used for calculation may be

simplified considerably by using the so-called method of envelopes.

We shall represent the oscillations at the input end of the filter

in complex form

Yt) is here the envelope of the amplitudes, and Y7t) is the complex

amplitude (complex envelope) including the initial phase
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(2) 1
In an analogous way, the complex amplitudes ((t), Tht), T(t), 6(t) may

be introduced.

All relations for the complex amplitudeL follow from the corres-

ponding relations for the instantaneous values y(t), x(t), u(t), v(t),

w(t), as can be shown by several examples.

As the first example, we shall consider the expression for an ex-

pected signal arriving with some delay:

x(t) =u(t- t)

or
x x ) X () cos [M.. + (1)] = U (i - t") cos [w. (-4)4+

+?.(t-ts)].

Introducing complex amplitudes we obtain

Re IX(t) e/'j = Re [U(I -4) eI'eifl.

Since this equation is correct for arbitrary values of the complex 4
quantity eJ Ot, also the complex factors with eJWot are equal to one 41

another, i.e.,

(3)
We pass to the corresponding expression for the pulse-response

characteristic of the optimum filter

o0.,T Mt = CU N4.- )

Introducing complex amplitudes we obtain

Re IVo.., (t) ef&J --- Re CU(t. - 1) e- ('- 1. (4)

It is still inconvenient to use this expression to compare the

complex amplitudes since the factor eJ Ot enters the left-hand side of

Eq. (4), whereas the factor eJ ot enters the right-hand side. We shall,

therefore, replace the complex expression the right-hand side of Eq.

(4) by its complex conjugate value: in this case the real part will

not change and the equation

103-
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Re IV.., (t) e"I -- Re ICU (I. - 1) e-""j.

remains correct.

The obtained relation holds for arbitrary values of eJwOt. Con-

sequently,

Vo () =CU (.- t) e - ". (5)

Expression (5) establishes the connection between the complex

amplitudes of the pulse-response characteristic and the expected sig-

nal.

We shall now conider the connection of the complex amplitudes at

the input and output ends of the optimum filter. As before, we shall

choose the corresponding expression for the instantaneous values [(4)

§4.3],to be the basis. Introducing complex amplitudes into it, we ob-

tain

ReIW(t)e'*j = ReIV(t--s) e'*"'-s'Re[Y(s)el'1 ds. (6)

In order to transform (6) we use an auxiliary relation that is

well-known from the theory of complex numbers,*

ReaRe6=Re [ !6 a (7)

Besides, we shall take account of the fact that the real part of the

sum is equal to the sum of the real parts and that this relation remains

correct if we go over from sums to integrals. The right-hand side ofIi expression (6) may then be rewritten in the form

Re [+abds+-L, qb"ds)I

where-, a-- V (I -S ) ell% -'}

b Y(s) el'.

As a result of transforming (6) we obtain
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Re [W (1) e'*- Re {[W, (1) -- W,(sl el"}, (8)

where

W, ( 2)=-- V(t-s)(s)ds, (9)

W.(1)+ 00 V (-s) Y'(s) C"'ds. (10)

It follows from relation (8) that the expression for the complex

voltage amplitude at the output end of the filer may be written in the

form

w (t) = w, Wt + w. (t), (l

where the quantities Wl(t) and W2 (t) are determined in terms of the

complex input voltage amplitude by Eqs. (9) and (10).

In the case of a sufficiently high carrier frequency (compared to

the spectral width of the signal) the complex amplitudes vary slowly

whereas the factor e-J2wo s in expression (10) oscillates rapidly, com-

pared to them. Consequently, on integrating expression (10) we obtain a

negligibly small value of the second term in (11) compared to the first
one, i.e.,

.1a

Formula (12) is a very convenient calculational aid for analyzing

linear electric filters.

In particular, we obtain for an optimum filter by virtue of rela-

tion (5)

W .. (t)-- Cc PA u- U(to -I+S) Y(s) ds. (13)

If a useful signal without any interference Y(t) = X(t) [relation

(3)] acts on the input end of the optimum filter
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W,()- 7  L(I,- I +s) U(s - 3) ds.

The envelope of the useful voltage at the output end of the filter

can be found as the modulus of the corresponding comnplex amplitude

W.(t)=I(I)I s--C SnJ(s-1±.Us- t,) dsl. (14)

It is characteristic that factors oscillating with high frequency

do not enter relation (14), for which reason the calculation of the

envelope is simpler than that with the help of the formula for the in-i~1 stantaneous values [(4) §4.3.].

By way of example, let us calculate the result of the action of

a radio pulse with constant instantaneous frequency on the optimum fil-

ter. We assume the shape of the envelope to be similar to a rectangu-

lfr one, supposing the duration of the fronts to be small compared to

the pulse duration Ti (but great compared to the oscillation period).

For numerous calculations we shall restrict ourselves to the rectangu-

lar approximation, on the assumption that the function

if t, < t < < + Ti, and that this function is equal to zero for all

other t. Hence it follows that its complex amplitude

if t<t ort>t.+,. (15)

in the given case, the complex amplitude is described by the 1.-al

function U(t - t7 ) = U(t - tz). In this case, also each factor in the

expression under the integral sign of relation (14) will be real:

LI' (s - (.+ t,) =U (s -I + '.),

b'( -t)- U(s - 5t).

The diagrams of these factors and their product' ,rf functi,-i" of the

integration variable s are shown in Fig. ,.,,a, U, u, , ,''h co~re;-

pond to the following four cases:

--- -,---.



tt -

* I

t-t.o *~r 
01t-*

I U(s.t).U(S-ttj I

a b c d

Fig. 4.8. Typical calculation of voltage envelope at optimu-filter
output.

a (F ig.4. c).

d t a-l'.s t ut, (Fig. 4.8d).

It is easy to see that for the cases a and d the integral (14) is

equal to zero since the expression under the integral sign vanishes i-

dentically. j
For the cases b and c we find, respectively:

W. m' C C[

Wo()= C - I1--t
0 < (t-4) 13 < j.

or else,

WO r2 C-Ii M-I Y-1.)1II, if I(- t)-. I' .<

Figure 4.9a and b show diagrams of the envelope of the useful si.g-

nal voltages at the input and output ends of the filter as functions of
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time. Analogous diagrams of the instantaneous values of the same volta-

ges are drawn in Fig. 4.9c and d. The maximum of the output voltage

envelope corresponds to the inst&nt of time tz + to. The filter reali-

zability condition to 2 T. corresponds to the fact that the voltage peak

at the output end of the optimum filter cannot be obtained before the

pulse has come to an end. In the opposite case, it would be quite im-

possible to make use of all its energy.

I

t fto f

t

ki Ito

Fig. 4.9. Diagrams showing the envelopes and instantaneous values of a
useful signal at the input and output ends of an optimum filter for a
rectangular radio pulse with constant carrier frequency.

§4.7. RECEIVER WITH OPTIMUM FILTER IN THE CASE OF RANDOM INITIAL PHASE

OF THE SIGNAL

We may approach the problem of designing a receiver with optimum

filter in the case of random initial phase of the signal from two points

of view.

It is, e.g., possible to analyze the behavior of the voltage at the

output end of the filter if the initial phase is random arid hence to

provide for the corresponding modifications in optimtxm processing.

More rigorous will, however, be the synthesis of a pi cessing
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device with optimum filter immediately from the probability ratio for a

signal with random initial phase or with random amplitude and initial

phase. We shall, therefore, begin with the analysis of the probability

ratio.

It follows from expressions ((2) and (3) §4.2] that the probabi-

lity ratios are monotonic functions of the quantity z = + z for
1 2

these cas,,s. It was Just this fact which was chosen to be the basis of

designing a correlation reception circuit with two quadrature channels.

When using an optimum filter it is not necessary to have a circuit with

two quadrature channels. We shall confirm this by appropriate mathema-

tical calculations.

From Eqs. [(7) §4.2] we obtain 5

xi ( = Re IX(t) e'%'] =Re [X" (1) ej, . (i)c -X mI [X) l Im [X" (t) e'- 4,

where X(t) = X(t)eJ~px(t). Hence by virtue of [(6) §4.2]

z.=Re ().r(t) .dt

Let us remember that for any complex number a = Re a + jIm a tho 4"
equation

is valid.

Consequently,

Z=,'z+z=)r) hdII• (1)

Using the obvious equation

N Yt - (1) Cos [..t + ?I, (W .rO 'V +
2(2)

++ Yt(t) eAV,

we rewrite the expression under the integral sign (1) as the sum of two
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terms

2 2

the second of which is rapidly oscillating with the high frequency 21,O .

Neglecting its integral we obtain

or, owing to Eq.[(3) §4.6]

z Itj , ) t r (t t,) d t. ( 4)

Putting the constant factor eJmOt in front of the integral sign

and realizing that its modulus is equal 'to unity we obtain

1>!

z(&)= Y(s)Lr(s-t., (5)

Let us compare the obtained expre ssion with expression [(13) §4.6]

for the voltage at the output end of the optimum filter as calculated

IxI

for a given signal u(t) with arbitrarily chostn initial phase. We sub-

stitute into [(13) §4.6] the value of t = t 3 + to corresponding to rea-

ding off the amplitude peak of the useful signal at the output end of

the filter. Passing over to the modulus and taking into account that

le-ingisitga we obtain

or

Won, Yt. +t.:ct •*(7)
Thus, the voltage amplitude at the output end of the optimum fil-

ter at the instant tz + to represents, except for a factor, the quanti-

ty Z(tz) , which also has to be compared with the threshold for each

trial delay time. Thus, in order to obtain the quantity act t is

sufficient to have only one channet. In order to go over from the in-
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stantaneous voltage values at the output end of the filter to the amp-

litude values an envelope detector must be set up. In other words, an ,

optimum receiver must contain a detector, besides the filter.

We may come to the same conclusion by directly analyzing the vol-

tage at the output end of the optimum filter in the case of a random

initial phase of the signal, which was remarked at the beginning of the

section. The phase of the input voltage is also random in this case. In-

formation on the presence of a signal is, therefore, only yielded by the

envelope, which may be obtained by amplitude detection.

The voltage after the detector must be compared with the threshold

whose level is chosen by taking account of the transmission factor C of

the filter. One channel of optimum processing (Fig. 4.10) permits targ- j
ets differing by the delay time to be detected',

The significance of the results obtained is sufficiently general. j
The processing system consisting of the optimum filter and the amplitu-

de detector may be used, as will be shown in the following, as an element

of the system of optimum delay time measurement for the type of signal

under consideration. Besides, the conclusions obtained for signals with

random initial phase may also be applied to more complex signal models.

B
VAememeq

VUUbfP OW&Pwvhid 7if exime"M4 WLVLMe"&bnWq C

Fig. 4.10. Principle o.f designing a single-channel receiver with opti-
mum filter for a signal with random initial phase. A) Optimum filter;
B) envelope detector; C) toward the threshold and measuring device.

§4.8. CORRELATION-FILTRATION RECEPTION

Considering various versions of optimum processing we satisfied

ourselves of the fact that in each of them we encountered on the calcu-

lation of the correlation integral

~ -- lll -
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Z= z X= y(Od (l)

In §4.2 the computation of this integral by means of direct multi..

plication and integration with the help of a correlator was considered:

In §4.3-4. 7 we intended to o1tain this integral as the voltage at a

certain instant of time at the output end of a linear optimum filter.

A combined method of calculating this integral is also possible,

in which both multiplication of the voltages and filtration of the os-

cillation obtained in doing so are used. We will call a receiver desig-

ned according to this principle a correlation-filtration receiver.

Let us assume that the expected oscillation x(t) can be represen-

ted as the product of two f.unctions
x(O--,(t) ,(O.(2)

Figure 4.11 shows that the computation of the correlation integ-

ral (1) is carried out in two stages. First, the received oscillation

y(t) is immediately multiplied by xl(t). The received oscillation

YA M (t) XO M(3)
is fed to the filter which is optimum for the oscillation x2(t). At a

certain instant of time the correlation integral

v,(i x .(Od r = u( 1 x, ()dt. (4)

By virtue of relation (2) this integral coincides with the given

correlation integral (1).

XI*(tJ

Fig. 4.11. Structural diagram of the
$ simplest correlation-filtration re-

ceiver. A) Multiplier; B) optimum
filter for x2 (t).
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Figure 4.12 shows a coherent sequence of rectangular radio pulses

x(t) as an example illustrating the representation of a real signal by

means of relation (2). It is represented as the product of two func-

tions - the function xl(t), which corresponds to a sequence of video

pulses, and the function x2 (t) corresponding to a single radio pulse

of long duration.

b

I 1 I I 'I I I .

S VVVV HVIQ VIVU
Fig. 4.12 Representation of a coherent

sequence of pulses as a product of two
functions.

The multiplication of an arbitrary function y(t) by xl(t) (Fig.

4.12a) is equivalent to a gating of the oscillation y(t) by means of

rectangular, selecting video pulses xl(t). In its turn, designing a

filter for a single radio pulse x2 (t) (Fig. 4.12b) is a simpler prob-

lem than designing it for a series of pulses (Fig. 4.12c).

The simplest approximation to an optimum filter for a radio pulse

of long duration x2 (t) is a narrow-band circuit whose band is inverse-

ly proportional to the duration of the pulse.

We must, however, mention that the reduction of the demands made

on the filter is achieved on account of a limitation of the possibili-

ties of using the circuit. Optimum work of the circuit is only possible

if the gated pulses coincide with the pulses subject to processing. In

the opposite case transition to multichannel circuits is necessary as

shown in Fig. 4. 3.
- 113 -
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For the example under consideration the receiver (Fig. 4.11),

thus, proves to be a device with gating of the pulses to be processed

and their coherent storae in the narrow-band systen, on the high fre-

4quency applied.
Let us consider another important but, compared to the precedig

4 one, modified case of correlation-filtration reception which leads to

' optimum processing making use of filtering systems on an intermediate

frequency. LetI

where4R X(t)XY(t), 00=.0+021
'? W

4 .jf the functions xl(t) = Xl(t)cos[wlt + Tl(t)] and x2 (t) = X2 (t)

cos[w 2t + q2 (t)] are introduced, their prodact yields x(t) up to a

difference frequency term c- and an unimportant factor 1/2:

X, M X3 (t) 1 X, (1) cos [. + (t) +is +'I xo5 ( '1.,.. +,2 -0(

Let the sum and the difference frequency terms have nonoverlappingI spectra, and the frequery interval w0 - AW/2 < w < cO + Lw/2 complete-

ly cover all components of the spectrum of the sum frequency u0 .

In this case, the oscillation x(t) can be formed by filtering the

product xl(t)x2 (t) with the help of a filter which does not distort in

the A6w band and suppresses the oscillations outside this band.

Let us denote the pulse-response characteristic of such a filter

by Vf(t) = 2x3(t tf), where tf characterizes the delay time in the

filter. The expression for x(t) can then be represented by a convolu-
i : i tion integral

Ix()=2 x, X(s) x(s) x( -t#- s) ds. .
-114-
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Eq. (5) is'a generalization of Eq. (2) and goes over into (2) for

x 3 (t) (t) and tf = 0.

If x(t) is represented by Eq. (5), the calculation of the correla-

tion integral reduces to the operation

= J yQ) [2 5x,(s)x(s)x(e:1#- ds] dt.

On interchanging the order of integration this operation may be

replaced by the following operations:

1) we calculate

)w(s)=2 v(lx(ulats)d;

2) we calculate

3) we calculate

z y (s) x2(s) ds.

The first operation may be carried out with the help of a filter,

the second one by multiplying by xl(s) and the third one by means of

a filter, as well.

In particular, if we put w2 = pr' '1' : '0- P r X2 (t) = X(t), r

P2(t) = cx(t), Xl(t) = 1, CPl(t) = 0, the indicated operations will re-

duce to the following ones:

1) preselection of the high-frequency oscillation spectrum be-

fore heterodyning.

2) heterodyning with the help of a heterodyne whose frequency is

W =  - 0 r' and whose amplitude and phase are not modulated.

3) optimum filtration of the signal on an intermediate frequency.

Thus, the given case corresponds the ordinary superheterodyne re-

ception method.

If we put 02 =pr' 0 1 = o - wr' Xl(t) X(t), Tl(t) = x(t)p pr
- 115-



X2 (t) = 1 (in a section greater than the signal duration) 92 (t) = 0,

Vthe processing operations will reduce to the following ones:

1) preselection before heterodyning.

2) heterodyning with the help of a heterodyne whose law of modula-

tion corresponds to the modulation law of the signal,* and whose carrier

frequency is l = J 0 - p r"

3) optimum storage on an intermediate frequencywr with the help

of a narrow-band circuit.

If we put W2 = Wpr, "i = "0 - "pr' X2 (t) = X(t), P2 (t) = 0, Xl(t) =

1, cp(t) = px(t), this implies that the heterodyne voltage on the

carrier frequency = O-p must take account of the phase modula-
il~ pr

tion law of:the signal, and the characteristic of the optimum filter on

the intermediate frequency must allow .or the amplitude modulation law
) of the signal.

In the latter two cases we are concerned with modified operations

of superheterodyne reception differing by the distribution of the func-

tions between correlation and'flltration processing. It is easy to rea-

lize that very many variants of this distribution are possible.

§4.9. RECEIVER WITH OPTIMUM FILTER FOR A PACKET OF RADIO PULSES WITH

RANDOM INDEPENDENT INITIAL PHASES

Let us pass on to the synthesis of optimum receivers for a signal

in/the form of a radio pulse packet with random ihitial phases. We

j shall choose the expressions for the probability ratios (§3.5, 3.6) to

be the starting point:

a) in the case of a nonfluctuating packet

'A2

b) in the case of independent fluctuations of the pulse packet

-116-
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1=f~yj-q.e. 3-+ N.. (2)

We shall not consider the case of friendly fluctuations. Taking the

logarithm of these expressions we obtain

= N I1M -(3)

N, .9+. 9+N. (4)
In doing so, the operations of multiplication are replaced by the sim-

pler operations of addition.

It is essential that zhe logarithmic functions is monotonic. Con-

sequently, instead of calculating the probability ration I and compar-

ing it with the threshold XO it suffices to calculate the quantity ln

and to compare it with its threshold ln 1O, which simplifies the real-

ization of optimum detection devices. When realizing optimum detection

devices it is possible to start from the obvious relation I = eln£.

Substituting ln into it from relation (3) or (4) the values of I

needed to calculate the aposteriori probability density of the parame-

ters to be measured may be obtained.

Thus, we may assume th, in detection and measuring systems, the

cascades of an optimum receiver, except for the terminal ones, must

carry out the mathematical operations;

h.h

in the processing of a nonfluctuating packet and

h .(6)
a

in the processing of a packet with independent pulse fluctuations.

In both cases, the initial stage of processing is the calculation

- 117 -
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of the quantities Zk for each pulse separately

where Xk(t) = Xk(t)e Jk(t) is a given functioc dgisnding on the time

position of the kth pulse, its amplitude and its law of modulation (it

does not depend on the random unmeasurable parameters Ok and Bk, see

§3.5, 3.6).

Let us introduce amplitude factors Sk characterizinL the shape of

an undistorted packet. For the greatest pulse of the undistorted packet

S = 1. Denoting the kth pulsing moment by tk, and its delay time by

tzk we represent the function Xk(t) in the form

(o = u~-t,-t.)e~l.",+ ',).(8)

In this case,

Z =$ZA,(9)

where for any pulse number

Z.= --. ~Y() UT -4 - 40)dtI (10)

This implies that all quantities ZOk may be obtained with the help of

the circuit diagram considered earlier (Fig. 4.10) for a signal with

random initial phase. This circuit consists of an optimum filter, in-

tended to process the pulse t(t), and the envelope detector. In order

to obtain the quantities Xk after the detector it is necessary to add

a circuit introducing weight factors Sk.

Thus, a weighted packet of video pulses is obtained as the result

of the first stage of processing an incoherent packet of radio pulses.

For a nonfluctuating packet the following processing reduces to

the calculation of the values of Inand their summation, The

result of summation does not depend on the initial phases of the high-

frequency oscillations since video pulses are summed. Such a summation
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is called incoherent. The v'hole diagram of optimum processing is shbWn

In Fig. 14.13. It consists of an optimum filter for the single radio

pulse, a linear detector, the circuit' of multiplication by the factors

of the packet envelope Sk, a nonlinear element with a characteristic,

of the form lnIo(U ) and an incoherent summation and storing divice re-

alizing the actions of combining video pulses which do not act at the

same time and of summing them. Judging by its outside this diagram re-

minds somewhat of a correlation-filtration diagram. It differs,' however,

from it insofar as the multiplication by Sk is carried out after the

detector. * V
A B z C 24 1 4k D

ow ~U(l Oem opmeip uiems,. aflmm

Fig. 4.13. Structural diagram of optimum pro-
cessing of a packet of radio pulses with ran-
dom initial phases. A) Optimum filter for
Utt); B linear detector; C) multiplier cir-cuit; D nonlinear element; E) summation andstoring device.

For the limiting cases of weak and strong signals the diagram in

Fig. 4.13 may be simplified in an essential way. In fact, for small

values of the argument u = 2SkZok/., the function inlo(u) is well ap-

proximated by the first term of its power series expansion in u

4 ,

i.e., it has a parabolic initial part. For great values of the argu-

ment its asympotic representation can be used

m&( =., > ,(12)

which corresponds to the linear region in its diagram (Fig, 4.14).

This implies that for a packet of pulses whose amplitudes are r
-119- K
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smal.l compared to the noise
"

I .244 (13)

and foi great armlitudes

N, (14)

Thus, th"e summ"tion of logarithms is rIeplaced by the summation of

lihear or quadratic functions of th quantity ZOk The incoherent sum-

matibh proves to be weighted. The weight coefficients are quantibites

proportional to the square or first power of the expected value of the

pulse amplitude Sk, respectively. This summation, as well as the for-

mation of the correlation integral may be realized with the help of a

special filter-

In this connection, the schematic dia-
:1:w gram of Fig. 4.15 shows the optimum filter

or of post-detector processing (its possible

realizations as well as the realizations of

pre-detector filters will be considered in

UChapter 5). In the diagram of Fig. 4.15 a

Fig. 4.14. Diagram of linear detection is provided in order to
the function lnIo(u).

realize processing in accordance with rela-

tion (14). If the processing (13) is needed the detector is replaced

by a quadratic one. In this case, also the necessary pulse response

characteristic of the post-detector processiriC. filter is changed.

Let us pass on to the construction of a circott for optimum pro-

cessing of a packet with independent fluctuations of the pulse ampli-

tudes. By virtue of Eqs. (6) and (9) this circuit must realize the

mathematical operation

S - 120-
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S 2 2 z 2

't1 sZQo 1 1

where ,.=AS is the mean energy c. the greatest pulse of the undis-

torted packet. As in the preceding case (13), the matnematica]; operation

reduces to the weighted summation of squares of the quantities Zok.

Consequently, *uhe circuit diagram of Fig. 4.15 in which the linear de-

tector is replaced by a quadratic one is adequate also in the given

case. But in contrast to the case (13) the quadratic detection is op-

timum also for strong and for weak signals, and the weight factors are

proportional to . For a pulse packet with rectangular env-
S1 + N13.

elope the weighted summation is equivalent to a nonweighted one since

all weight coefficients are equal to each other.

Thus, the considered circuits solve the problem of optimum pro-

ccozng of signals in the form of packets of pulses with random initi-

al phases without fluctuations and with independent fluctuations from

pulse to pulse. In order to guarantee optimum detection on the basis

of these circuits it is sufficient to set up the last element in the

form o:2 a threshold circuit. To realize the optimum measurement of a

parameter also an appropriate last element is necessary. An example of
designing such an element for measuiing the delay time t = const is

given in the following section.

A B #r

Fig. 4.15. Simplified circuit diagram of
optimum processing of an incoherent pack-
et of great-amplitude radio pulses. A) Op-
timum filter for U(t); B) linear detector;
C) post-detector processing filter.
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§4.10 OFTIMUM MEASUREMENT OF DELAY TIME

The expression for the a-posteriori probability density (§2.7)

piU (1)l=Kip(.),[(O)lta! (1)

is represented in the form

P~tly(Ol--pQ.)effiII.I~ (2)

For a packet of radio pulses with independent initial phases the

logarithm of the probability ratio will be

No ((3)

Tle quantity ZOk(t 3 ) is here determined from the value of the vol-

tage envelope at the output end of the optimum filter

w (4 ,+ ,,+ Q,)cz,,%(to)." (4)

where tk is the instant at which the corresponding sounding pulse is

~~given.•.

Taking accc'unt of the results of the preceding section we obtain

the circuit suitable to determine the a-posteriori probability density

of the delay time (Fig. 4.15) with the addition of a terminal device

(Fig. 4.16),

LLL

* ~ '' "~ !z'J Vcw.*mt t.LO 01 (tm)],hI &I W fflhVj

Fig. 4. 16. Circuit diagram of a termoal device for obtaining the most
probable a-posteriori estimate. A) Nnlinear element; B) Circuit in-
troducing a-priori data; C) device f'r working out the estimate.

This device contains:

K 1) a nonlinear element with exponential characteristic.

2) a circuit introducing a-priori data. At the output end of the

! * latter the a-posteriori probability density p[tziy(t)] is obtained ex-
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cept for a factor.

The circuit introducing a-priori data is an element realizing the

multiplication of the probability ratio and the a-priori probability

density as functions of a possible value of the measurable parameter

delay time a = tz . In particular, if the distribution of the distance

from the target is equally probable in some interval interval rI < r <

< r2 , an ordinary gate amplifier which is turned on for an interval of

delay time values of tz < t z < t

l z 2.1 tC

may serve as the circuit introducing a-priori data.

The estimate of the measurable parameter may be carried out from

the curve of the a-posteriori distribution of this parameter in ac-

cordance with the criterion of the mean risk minimum. In analogy .to

the case of one-dimensional measurement the center of gravity of the a-

posteriori distribution curve *1

proves to be the optimum estimate, or, by virtue of [(16) and (17)

§2.7]

P (a) elOI d ,,

As was already shown before, frequently the most probable estimate, i.e.

an estimate a* = t* such that zI
jtPiaI(t)!=o f orf=. (6)

is chosen to be the optimum estimate. This estimate corresponds to the

maximum of the a-posteriori distribution curve of the parameter tz . The

device for working out this estimate is also the output stage of the

-123- '
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circuit in Fig. 4.16.

In those cases where the a-priori probability distribution in the

interval of measurable values of the delay time tz1 < tz < tz2 may be

assumed constant the optimum measurement circuit is simplified consi-

derably. By virtue of (.) and (2) one of the following two conditions

is sufficient to fulfil. ;(. (6).
d - ly(t)I41= o fort= t: (7)

d*

4.-a-1nhiy(t)1j1=O for t=1, (8)

Using Eqs. [(3)-(6) §4.9] we conclude that in this case the most

probable estimate corresponds to the voltage maximum at the output of

the summation circuit (Fig. 4.13 or 4.15). Otherwise, the structural

diagram of the device (Fig. 4.16) for working out the estimate can be

replaced by a simpler one (Fig. 4.17).

A B
~I&(IAti1.censt CMpeluPYeb:i Yyq4CM1 t'

Fig. 4.17., Modification of the circuit of Fig. 4.16 for a rectangular
law of a-priori. distribution in the case of delay time measurement.
A) Gate amplifier; B) del-ice for worhing out the estimate; C) gate;
D at.

Since the values of the functions ZOk(tz) are working out for va-

rious expected tz in chrerological succession they may be estimated by

means of the voltage envelope of the individual pulses at the output

of the optimum filter. The same successi'e influw of data usually takes

place also after an incoherent summatior circuit. Consequently, the

differentiation (8) practically boils down to the determination of the

instant of time at which the maximum of the strongest voltage pulse ar-

rives at the output of the inchoherent summation circuit.
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If each individual pulse of the packe' is remarkably discriminated

from the noise after the detector one may do without an incoherent sum-

mation circuit when working out the optimum estimate t*. In doing soi

the necessary accuracy of measurement can be secured by taking the mean

of the delay time estimates obtained independently from each pulse of

the chosen packet, a fact that follows from Eq. (8). Using [(3) and (14)

§4.9] we obtain

)o(9sd.,,.= 8p ,P .=t:=Cont. (9)

in its turn, when estimating the delay time of only the kth pulse

of the packet we have

d. "Z.A,)=o .rpH (10)

where tj is the optimum estimate of the delay time tz, obtained after
receiving only the kth pulse.

Expanding each of the functions Zok(tz) in a Taylor series in the

neighborhood of the corresponding estimate t*k we obtain by virtue of 4
Eq. (10)

Z.&(,.)--z*&t) +- z. (<X).-,. )". (11)

where

.,,Us)- --Iz.t.f.)l.
Substituting (11) into (9) we find

hs% z;'A (t, K

whence

I * --m _ (12)

i.e., the optimum estimate of the delay time measured once for the

whole packet is the weighted sum of the results of independent measure-

-125-



*-,.., ,.'\

V ments for the individual pulses. The weight coefficients are quantities

that are the reciprocals of the disper., ions 'of the independent measure-

ments, a fac~t one may realize after studying Chapter 6.

I The following modification of the calculation carried out which

is part lcula.rly, interesting in case one object is observed for a long

time while tracking it is possible. Aiming merely at the explanation of

the ideas and results of the modified calculation we maintain the as-

sumption that the true delay time is the same as measured from (m - 1)

and from m pulses (a somewhat more complete consideration is contained

in Chapter 8).

We denote the sum entering (9) for m - 1 pulses by

.S,%Z. 1, (t,)-- Z= Z ,p) (13)

r - !

and 'the optimum delay time estimates from all (m - 1) and m pulses by

tZ(m_l) and t m, respectively (in contrast to the estimate to , from

terth pulse only). 
O

The conditions for dete einng these optimum estimates will then

assume the form, owing to (9) and (13),

ip7 ..yr ti c for a,--o 0_,rt long

ti Z h.er) + sb. Aimin for tl t th el

Using the Taylor expansion for the functions Z m (t ) and Z

(tz) for the neighborhoods of the corresponding optimum estimates we

find

We denot.thesu entering, (9), form)- 1;,, pulses_,by

S X(to - tZ' (,(I, (16)

z#. -(t.)',, Z. ,(10"' - -1Z9," (t0*.l I (t. -to'). (17)

On the assumption that the corresponding neighborhoods overlap and

substituting (16), (17) into (15) we may obtain
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t.- 0,1_+ As% (too," (t - ,(in (18) [
whe re

• .I ,( ~~. -_,Es I Z"" ' (,. "* (9)

Eq. (18) shows that the optimum delay time estimate from m pulses-

is the sum of the preceding estimate from(m - pulses and the time sig-

nal of the error (t~ - tZ(ml)), multiplied by some weight factor Am

Differentiating (17) and substituting t. = r(ml), the time sig-

nal of the error may be determined

Is-tooO f or t,=t, ,.

Expression (18) then reduces to the form

where

an= IVS.a=+ (21)

The quantity Z0m(tz) characterizes the voltage of the error signal.,

Owing to (17) it vanishes at the point tz = t*m, and passing through

this point with increasing t. the sign changes from positive to negative.

If in the case of prolonged observation the quantities Am and am

which vary from reading to reading are replaced by constants in (18)

and (20) the operations (18), (20) will reduce to the wellknown opera-

tions for the range self-tracking (see Chapter 8). The operati.on of ob-

taining the voltage of the error signal in the form of the derivative

Zm(tz) corresponds to time discrimination with selecting pulses of

short duration since only under this condition the derivative will be

taken at the point tz as a result of the discriminabion.

The latter conclusion was obtained from the found calculaticnal

relations as the consequence of the assumption on the small scatter of
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the values of t(ml an4t1Sn h
the values ofod In the opposite case one usually a.is

at increasing the duration of the selecting pulses in order to reduce

the probability of a tracking collapse.

§4.11. THE PRINCIPLE OF BROAD-BAND RADIO PUISE COMPRESSION

All preceding discussions were concerned with the optimum proces-

sing of radio signals of arbitrary form. Let us now deal with the pro-

perties of optimum processing of signals having the form of broad-band

radio pulses, i.e., of radio pulses the product of whose spectral width

the duration is essentially greater than unity. It is assumed that pro-

cessing' is realized by optimum filtration on a high or intermediate fre-

quency. The pulse parameters are assumed to be given except for the am-

plitude, the initial phase and the delay time which is the same during

the whole duration of the pulse (a somewhat more general case will be

considered in Chapter 7).

As was shown in §4.5 the shape of the signal voltage at the out-

put of the filter which is optimum for it

WI (1) = C g (1) 11 cos [2- I (t - 1, - 1.)] d(

depends only on the amplitude-frequency spectrum of the signal. By de-

finition, the spectral Censity of an arbitrary real function of time

u(t) is

g (1) = u (1) e-l-"d = g'(-I).

The amplitud'e-frequaency spectrum is, therefore, symmetric relative to

the axis cf ordinates f 0, i.e., Ig*(-f)l"-Ig(f)l and the expression

(1) reduces to the form

z. () - 2CS g (t) 1 cos [2:l (t - t. - t.)Idf. (2)
J

We introduce the function G(f) describing the distribution of the

spectral density around the carrier frequency on the semia is of positivei- 128-
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frequencies
S-{g(f. +,f or +.+;,O0. ;0 (f)- f+F"

0 for f.+F<O.

After replacing the variable of integration f = fo + F in (2) we

find
Pdo

w ( C= 2c " G (F) I' cos [2: (I. + F (tIt -I .)l dF.

Using the formula for the cosine of a sum we obtain

We (1) - W, (1) cos (2111 (1-12-to)1-
-W 2 (I) sin 2fo0(f-ts-to)],

where

,co, (4)WS.1)i2 J(,%1 ,iu [2,,p(t-t- t.)jdF.

Or

we (t) - W(t) cosl2zro (t-t,-to +'0 (), (5) 7

where

W~t)i/ 0(t+ 2 (t). 0()=arctg-V. (6)W1 (t)

The expressions (6) describe the law of amplitude and phase mo-

dulation of a r.dio pulse at the output of an optimum filter.

As can be seen from expression (4-6) the function 0(t) vanishes if

the amplitude-frequency spectrum is symmetric relative to the carrier

frequency fo and the output pulse

,w*() -'W, (t) cos[2xj0(1-3-10)] (7)

proves to be nomodulated as to the phase (even if the input pulse is

phase modulated). The phase of the output pulse may also vary by 7r if

the sign of the function Wl(t) describing the envelope changes.

The envelope W1 (t) is the narrower the broader the amplitude-fre-

quency spectrum of the signal. In particular, if a. spectrum of the width
P. -

Af is approximated by the rectangle
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I for IFI< -
G (,"t = " ( 80 for1,P>-, (

we have, according to (4)

0,11) , - .- t)

where Wm = 2CAf. Hence it follows that the pulse duration at the out-

put of the optimum filter is 2/Af on the first zeros, and 1/Af on the

level -Lt:;64 . Thus, the duration of the output radio pulse is not

determined by the duration of the input pulse, but by its spectral wid-

th.

The spectral width of a radio pulse may, generally, be considerably

greater than the quantity which is the inverse of its duration. Only if

the pulse is not phase modulated the spectral width is inversely pro-

portional to the duration of the radio pulse.

Using internal pulse modulation as to phase (frequency) or even

amplitude it is possible to broaden the spectrum remarkably compared to

l/Ti if the duration Ti is given, i.e., to achieve substantial compres-

sion of the output radio pulse compared to the input radio pulse.

Since the compression takes place in a linear system the superposi-

tion principle is applicable. The compression of two overlapping broad-

t band radio pulses that are shifted in time is realized independently,

for which reason it is possible to receive the compressed radio pulses

separately even if the reflected radio pulses arriving at the input of

the optimum filter overlap considerably.

Hence it follows that using compression of broad-band radio pulses

in optimum filters the resolving power as to delay time and range is

determined by the duration of the compressed rather than by that of the

sounding signal and inversely proportional to its spectral width.

Thus, an increase of the duration of the sounding radio pulses
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without impairing (or even with considerable improvement of the resol-

ving power of a pulse radar as to range is made possible.

The increase of the duration permits the enei'gy of the radio pul-

ses and the radar range to be increased without raising the peak power

which is usually limited by the conditions of generating and break-

downs in the transmission lines.

The increase in the resolving power in the case of spectral broad-

ening and optimum signal processing is a property of the latter and may

be realized not only in case the pulses are compressed in optimum fil-

ters. Let us, e.g., turn to a correlation circuit of optimum process-

ing (Fig. 4.1 or 4.2). We shall feed a radio pulse with a spectral

width of Af >> 1/-i into its input. Evidently,there will not be any com-

pression in this circuit. The correlation will, however, be disturbed

providing this pulse is shifted relative to the reference voltage by

a time lI = 1/Af << Ti" Hence it follows that among all overlapping

identical broad-band radio pulses at the input of the correlation cir-

cuit only the pulse for which this processing is optimum will be dis-

criminated.

Thus, the pulse compression in optimum filters must be considered

to be one of the variants of raising the resolving power on account of ft
spectral broadening.

Manu-
script
Page [Footnotes]
No.

104 As a matter of fact, ab = (Re a + j Im a) (Re b + jIm b),
from which Re ab = Re a Re b - Im b. Similarly, Re ab* = Re
a Re b*- Im a Im b* = Re a Re b + Im a Im b. The half of the!
sum of the given relations yields expression (7).

110 The character of relation (7) is more general than that of

(3) since it can be proved without neglecting the rapidly os-
cillating terms in the expression under the integral sign.

116 When heterodyning in the case of discrete signals the func-
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tions of gating are carried out at the same time.

119 Multiplication is also possible before the detector; in
this case it is-, however, possible to join a linear detector
and a nonlinear element.

Manu -
script [Transliterated Symbols]
Page
No.

84 Aon - dop = dopustimyy = admissible

88 = z=zapJyvaniye = delay

91 OT = opt = Optimal'nyy = optimum

95 c = s = signal = signal

95 n = p = pomekha = interference

* 95 -c maKc = s maks = signal, maksimal'nyy = signal, maximum

96 n 3= p ef = pomekha, effektivnyy = interference, effective

96 x =i = impul's = pulse

114 1= f = fil'ter = filter
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Chapter 5 I.

THE ELEMENTS OF OPTIMUM DETECTION AND PARAMETER

MEASURING DEVICES

§5.1. THE EL_!ENTS OF OPTIMUM DEVICES UNDER CONSIDERATION

Among the elements of Optimum detection and measuring devices $

there are: optimum fillers, incoherent storing devices, threshold ue- 1

vices, signal delay and memory devices, etc. Specific selective ele-

ments are, in particular, the optimum filters; we have established on-

ly the general rules by which they are governed, but did not discuss

the principles of their constructioni, as yet.

In widespread types of radar receivers the main selectivity and

amplificaticn are guaranteed by resonance amplifiers of intermediate I
frequency containing a great number of cascades. The problem arises as

to what extent these amplifiers can simultaneously perform the func-

tions of optimum filters. Moreover, it must be clarified how to design

optimum filters in case their functions are not performed by resonance

amplifiers.

Let us pass on to a consideration of the problems posed.

§5.2. CONDITfONS UNDER WHICH MULTISTAGE RESONANCE AMPLIFIERS CAN BE

APPLIED IN ORDER TO ACHIEVE OPTIMUM FILTRATION

The selective properties of resonance amplifiers are characterized 4
by their amplitude-frequenc and their phase frequency characteristics. "

The main approximations of these characteristics are: 0

1) The bell-shaped for the amplitude-frequency, and the linear

approximation for the phase-frequency characteristic (Fig. 5.1a);
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Fig. 5.1. Bell-shaped approximation of the amplitude-frequency and
linear approximation of the phase-frequency characteristic (a); cor-
responding pulse-response characteristic (b).

2) The rectangular for the amplitude-frequency and the linear

-i approximation for the phase-frequency characteristic (Fig. 5.2a).

The corresponding frequency characteristics K(f) will be written

in complex form fcr the frequency range f > 0. For the range f < 0 it

is implied that

In this case we obtain: for the bell-shaped approximation

Kj (fr=Iee (liL)O 4I V-t.). (2)

and for the rectangular one

Here f0 is the carrier frequency;

K0 is the transmission factor on the carrier frequency;

to is the slope coefficient of the phase-frequency characteristic;
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-f is the transmission band (for the bell-shaped characteristic

44

on a level of -r0, 46) •

a

.---- -- --
Y/I

b

Fig. 5.2. Rectangular approximation of the amplitude-frequency and lin-

ear approximation of the phase-frequency characteristic (a); corres-
ponding pulse-response characteristic (b).

The corresponding pulse-response characteristics are determined

from the Fourier transformation

.) () (4)

and will be

V, (r) V~e Y "o2-.1 . (5)

sin X .Its cos 2,jj. (6)

V0 = 2Ko~f is here the maximum value of the pise-response character-

istic amplitude, and T = 1/Af is a quantit, characterizing its dura-
0U

tion. The value of r0 is measured on a level of -e- 0,46 for the first

characteristic and on a level of 2-0,64 fo' the second one (in the
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latter cese it is, besides, the half-width of the characteristic with

respect o the first zeroes). The pulse-response characteristics (5)

and (6) are shown in Fig. 5.lb and 5.2b. It follows froi these figures

that the characteristics (5) and (6) can only be realized for suffi-

ciently great (theoretically infinite) values of t since otherwise

the condition v(t) = 0 for t < 0 is not satisfied. This fact is a draw-

back of the chosen approximations. It is, however, in agreement with

the fact that real systems satisfy well the approximations (2) or (3)

tth a great number of stages. The more stages the greater is the slope

coefficient of the resulting phase-frequency characteristic of to, at

the same time characterizing the de'Lay time in the amplifier.

Using the expression for the optimum pulse-response characteristic

u ,,o(s)= €u (4- s). (7)

we shall pass over to the explanation of the shape of signals u(t) for

which the considered approximations (2) and (3) of the frequency cha-

racteristics are optimum. Substituting tO - s = t we obtain

U W = - Y-, - (8)
Thus, the sought sj.gnals are the mirror reflection of the corresponding

pulse-response characteristics (Fig. 5.lb and 5.2b)

-i±
us (t)= ~ ' cos (2icfj - 1p), (10)

where U= Vo/C and c 27fot0 are arbitrary constants.

As we see, an amplifier with a bell-shaped amplitude-frequency and

a linear phase-frequency characteristic is an optimum filter for a bell-

shaped adio pulse of the resonance frequency fo (without phase modu-

lation). The pulse duration O and the transmission band Af on the

level r, .46 must satisfy the condition
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In its turn, a band amplifier with a rectangular amplitude-fre-+-;

quency and a linear phase-frequency characteristic is an optimum filter

for a radio pulse with an envelope of the form sin x/x. The pulse du-

ration T on the level 2/T 0 .64 is connected with the transmission

%.#' I

band of the amplifier by relation (11). The shorter the pulse duration

the broader the transmission bd must be, and vice versa. f

In the general case, agrement of the pulse shape with the pulse-

response characteristic of the filtering system is required. If there

is no exact agreement, the system will not be an optimum filter, rig-

orously speaking. Its characteristics may, however, be similar to op-

timum characteristics. Let us considel' the following practically im-

portant case in order to satisfy ourselves of this fact.

Let the frequency characteristic of the resonance system be ap-

proximated by expression (3), and the input pulse u(t) have a rectang-

ular envelope and a constant carrier frequency fo 0i

f()= u'cos2ifor t 2<-i-' (12)
0 forij>-, -.

i.e., there is no exact agreement between the pulse-response character-

istic of the system and the input pulse u(t).

Let us calculate the signal-to-noise energy ratio at the output of

the system and compare it with the optimum. w
We shall represent the voltage at the output of the system in the

form of a convolution integral m
,w{t)-- Jut- sl+u{ids. + +

Using expressions (6) and (12)
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A, - NnA-- o
wQt)=2KU.l X (-- ~

X cos 2%s, (t-s) coo 24*sds.

in view of the equation

Cos 2w. (I-a) cmg 2s1e= cos 21.1 + -o c 2f,*. -2s)

and the fact that the second term of the right-hand side oscillates with

a high frequency of 2fO &f as a function of the variable of integ-

ration s ,de neglect the integral of this term. In this case

w() = W(0 Cos 2.,t,

where W(t) is the voltage envelope at the output of the system

t)- -' ' [- ('- 7 -"+ (13)

The function Si y is here the integral sine

Sim CsIx dx.

The maximum of the envelope W(t) is attained at the instant of
time tm where W,(tm) = 0. Thus, tm is determined as the root of the equ-

ation "" 2-- ")_"2

This root is tm to, which follows from the evenness of the function

sin x/x. By virtue of Eq. (13) the maximum of the envelope will be

, = I(1.)_-,. I(.Uo,,----. (. 14)

The effective noise voltage referred to a resistance of 1 ohm is

determined by the relation

2= NllN(ld=~l.Af.
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The integration will here be carried out only on the positive semi-

axis since No(f) = No is the spectral density for positive frequencies.

Thus, the sought signal-to-noise energy ratio will be

W ,,, .) (15)

the obtained expression has a maximuim for the optimum value of the

product Af i = 1.37. In this case I

JNII# IC & 1.37

Noting that _IU2,C,_,9 is the energy of the radio pulse also re- Ji
ferred to the resistance of 1 ohm we obtain after carrying out the

calculation

Thi svlu iataed-i0,83t,-;... (1.6)

This value is attained with the optimum band of the rectangular fre-

quency characteristic ;"

f(17)

Comparing (17) with expression [(13) §4.4)] we satisfy ourselves

of the fact that a band filter with a nonoptimum frequency character-

istic, but an optimum band yields a loss in the signal-to-noise energy

ratio of 17% or by 1/0.83 = 1.2 times, for the type of signal under con- 4

sideration.

The last conclusion is only correct for the type of signal under

consideration if the initial phase is unmcdulated. If the initial

phase is considerably modulated the Land filter cannot yield results

that are so similar to the optimum.

§5.3. USE OF DELAY LINES IN THE SYNTHESIS OF OPTIMUM FILTERS

An optimum filter with a given pulse-response or frequency charac- -

teristic may be realized by using a delay line. Different methods of
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this realization are possible. Fig. 5.3 shows one of the methods of

designing an optimum filter. The use of a delay line with brancheb ser-

ves as its basis. Amplifiers with amplification factors K1 , K2, .. Km

are connected to the branches, and the outputs of all amplifiers are

fed to the total load.

Let 'the distance between the connection points of the branches

correspond to a delay by At. We shall feed a rectangular pulse of the

same duration At to the output of this line. In this case we obtain

the oscillation v(t) consisting of a sequence of 'rectangular pulses at

the output end. Taking a sufficiently great number of branches from

the delay line and choosing amplification factors K1 , K2, ..., K, as

well as their siguas any step-like curve may be obtained. Continuous

oscillations, among them also one that is similar enough to the mirror-

reflection of the given signal may be formed by smoothing this curve.

In the limit if At -+ 0 we may assume that the input pulses approximates

a delta function, and the output oscillation the pulse-response cha-

racteristic.
At

.,A A t i t Atli'
*1

R.H4ld C

fig. 5. 3. Principle of forming the
pulse-response characteristic by
using a delay line with branches.
A) Input; B) delay line; C) output.

Thus, it is possible, in principle, to form a pulse-response cha-

racteristic that is sufficiently similar to the given one. Obviously,

the circuit (Fig. 5.3) will practically be an optimum filter in the

latter case. The shorter, however, at the more branches from the delayI1- l -



line are required, and the limiting case _t -0 corresponds to a con- ii

tinuous extraction of oscillations from this line.*

The number of oranch lines from the line of delay may be reduced

if before it an additional filter of low frequencies 0 < f < F

is inserted (Fig. 5.4), and the delay %t is chosen equal to At = 1/2F
max

(see §2.6). Such a filter converts a unit pulse to an oscillation of V

the type sin x/x with a duration of 2At as measured between the zeroes.

Summing these oscillations any function with a limited spectrum may be

reproduced according to Kotel'nikoy's theorem (except for boundary ef-

fects). It is here implied that the duration of the pulse-response

characteristic Ti > > At. Instead of an ideal low-frequency filter an or-

dinary filter which is similar to it may be used, but in this case a

denser spacing of branches may be necessary.

In several cases the necessary characteristics can be obtained

comparatively simply by combining a delay line and a resonance filter-

ing system. Let us, e.g., assume that it is necessary to form the pulse- F

response characteristic in the form of a rectangular radio pulse of the

duration Ti = mT0 where m is a great number of periods TO. It turns out

that such a pulse-response characteristic may be formed with the help

of a line of delay by the time Ti with two branches and an oscillatory

circuit with a great quality factor. Figure 5.5a, b show different

forms of the corresponding circuits. The pulse-response characteristic

is obtained as the result of subtracting two Xree oscillations- an un-

delayed one and one which is delayed by r Owing to the great quality

factor of the circuit it represents the required radio pulse of a du-

ration Ti similar to a rectangular one.
1

The frequency characteristic of an optimum filter corresponds to

the spectrum of this pulse. In particular, the amplitude-frequency

characteristic has the form sin x/x; its width as measured between the
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zeroes is equal to 2/Ti .

IIU

Fig. 5.4. Formation of the pulse-response
characteristic v(t) with a limited frequ-
ency spectrum 0 < f < Fma x . A) Iriput;

B) filter; C) delay line; D) output.

If a rectangular radio pulse acts on the input of the filter a

rhombiform radio pulse is obtained at the output as it must be accord-

ing to Fig. 4.9. In this case a linear increase of the voltage ampli-

tude during the duration of the pulse and a very slow damping of the

oscillations after it has come to an end takes place in the high quali-

ty circuit. As a result of subtracting the two transient processes,

the undelayed and the delayed one, a rhombiform radio pulse of the du-

ration of 2Ti (Fig. 5.6) is obtained at the output.

AV A ort v-

84I

B B
ab.

Fig. 5.5. Formation of a pulse-response
characteristic in the form of a rectan-
gular radio pulse. A) Input; B) output.
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Fig. 5.6. Optimum filtering process
for square radio pulse in circuit of
Fig. 5.5.

§5.4. OPTIMUM FILTER FOR A COHERENT SEQUENCE OF RADIO PULSES i

We shall pose the problem of synthesizing an optimum filter for

an expected signal in the form of a packet of coherent radio pulses,

i.e., pulses whose phases are rigidly connected with each other. Only

the initial phase of the first radio pulse of the packet may be random.

For the sake of definiteness, we will assuma that all puses have the

same initial phase. We shall assume the period with which the pulses

arrive at the input of the receiver to .be equal to T.

Iv

Fig. 5.7. Shaping of pulse characteristic in
form of coherent packet of square radio
pulses. 1) Delay line; 2) final filter.
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Applyinig the method set forth above we shall choose a line (Fig.

5.7) with branches of a distance T and a total delay time MT where M

is the number of pulses in the packet. The branches are connected to

the summation device. We shall establish a terminal filter at its out-

*• put end (Fig. 5.5.a or b) which is optimum for a single radio pulse.

Let us consider the formation of the pulse-response characteris-

tic of the filter. If a unit pulse acts on the input of the delay line

a sequence of unit pulses is picked up from the output of the summation

device. Each of them generates its own rectangular radio pulse at the

output bf the end filter. As a result the required pulse-response cha-

racteristic is formed.

Let us track the result of an expected coherent packet of pulses

acting on an optimum filter. Fig. 5.8a shows the voltages as picked up

from the banches of the line, and Fig. 5. 8b the voltage at the out-

put of the summation device. As we see, the optimum filtration of the

packet boils down to a coherent summation of the mutually shifted pul-

ses of the packet. This leads to an improvement of the signal-to-noise

ratio at tie output of the filter since the pulses are added in phase,

and the interferences with random phases. Instead of the term coherent

summation also the term coherent integration of the packet pulses is

is used.

The end filter that is located after the summation device performs

optimum filtration of each of these radio pulses.

As a wholse, the voltage that is schematically drawn in Fig. 5.8c

is obtained at the output of the optimum filter.

The result of filtration will not be changed if the order of op-

timum filtration of a single pulse and optimum summation of the packet

pulses is interchanged.

As shown in §5.2, replacing the optimum filter for a single radio
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pulse by a band filter leads only to a small loss of threshold signal

energy.

n nn .x(.)
n n ri rltt-Jr

U. UJ LJ i

ni nu  n --.nxtt-2 ,i
J.u u - - '

F. 58 On ri n nztoe

ofa orentpce of recangula

ra o Uls

Fig. 5.8. Optimum filtration processof a coherent packet of rectangular
radio pulses,.!

' .

It makes, therefore, sense to distinguish the optimum sum-

nation circuit as a basic element of the device for optimum processing

of the packet. fj.
The frequency characteristic of the optimum summation circuit may

be calculated from the formula K

- u.I---=- O i..I() for uz()-e1z"

Summing up the geometrical series with the terms eh(T and

using the Euler formula we obtain
4 -. ,.Mr .,ur .M"-I"):
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timum summation circuit. It consists of a number of peaks and is, there-

~~fore termed comb-s~haped. Taking account of an optimum filter for a single

-1

| radio pulse the resulting comb-shaped characteristic shown in Fig. 5.1l0a

is obtained. If instead of an optimum filter a band filter is used the

shape of the envelope of the amplitude-frequency characteristic will

! be changed (Fig. 5. 10b).

Filters using optimum summation of the packet pulses are often cal-

led comb-filters (more accurately, optmum-pass comb filters).

LL

Fig 5.9. Comb-shaped amplitude-frequency character-
istic for an optimum summation circuit.

Comb filters can also be designed by not only using a delay line,

Fbut also oscillator circuits tuned to the comb frequencies. As can be

seen from Fig. 5.10 however, a considerable number of circuits is ne-

cessary such that this method is only appropriate for systems of low_,

pulse ratio.
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a

'UII

b
Fig. 5.10. Comb-shaped amplitude-frequency character-
istics for an optimum summation circuit, together with
a filter of a single radio pulse of the packet. a) In
case this filter is optimum; b) if it is replaced by
a band filter.

§5.5. AN EXAMPLE OF SYNTHESIZING AN OPTIMUM FILTER FOR THE COMPRESSION

OF A RADIO PULSE WITH A COMPLEX LAW OF MODULATION

Let us consider a radio pulse of a duration of Ti with a complex

law of modulation characterized by the fact that it consists of ele- j
mentary pulses of the duration 0 = ri/n (Fig. 5.11a). In the course of U

each time interval T oscillations of the same frequency f0 with con-

stant initial phase which may change by a Jump by 7r when passing over

to the following elementary pulse are emitted. In other words, if the

initial phase is constant and the same for all oscillations some of the

elementary pulses are multiplied by +1, and some by -1, which is shown

schematically in Fig. 5.llb.

The optimum pulse-response characteristic corresponding to this

signal is schematically represented in Fig. 5. llc. In order to design

an optimum filter with such a characteristic a delay line with branches

and a general summation device to which some of the branches are connect-

ed via inverse cascades may be used (Fig. 5.12). The output voltage of

the summation device is fed to the end filter which is optimum for an
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elementary pulse of the duration "= r/n (see §5.3).

F1 t,

a

-+ I-I -+ +T +1
b

c

Fig. 5,11. Radio pulse with complex law of modulation-phase-manipu-
lated radio pulse (a); conventional representation of a phase-mani-
pulated radio pulse (b); conventional representation of an optimum
pulse-response characteristic (c).

Let us track the process of optimum filtration of a pulse (Fig.

* 5.lla) with a complex law of modulation. Figure 5. 13a shows schemati-

cally the input radio pulses shifted in time allowing for the presence

of inverse cascades. The result of their summation is shown in Fig.

5. 13b, and the output voltage of the optimum filter, ar, a whole, in

Y±g. 5. 13c,

Fig. 5. 12. Formation of a pulse-response characteristic which is opti-
mum for a phase-manipulated radio pulse. A) Delay line; B) end filter.
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The considered example is interesting from two points of view. On

the one hand, it shows the possibilities of synthesizing optimum fil-

ters with rather complex pulse-response characteristics. On the other

hand, it illustrates the afore-mentioned effect of compression of a

pulse with a complex law of modulation in the case of optimum processing.

It is easy to see that the duration of the main overshoot of the output

signal can be made essentially shorter compared to the duration of the

signal at the input. I

We note that also a band-pass filter with an optimum band i

1.37/T0 = 1. 37/,'i n may be used as the end filter of the circuit (Fig,

5.12). In this case, the band-pass filter transforms the elementary I,

rectangular radio pulses (Fig. 5. 13b) into radio pulses the shape of

whose envelope is somewhat different from the rhombiform one (Fig. 5. ,

13c). Although as a whole the processing will not be optimum, the loss

in the signal-to-noise energy ratio is only 17%. j
i-I 1-1 1 1 + i.

1-+-+ + +! : z,
- -- +I++"

- + [+lT

• a 4

C

Fig. 5.13. Optimum filtration pro-
cess of a phase-manipulated radio pulse.
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N§5.6. SG DAY (M oRY) DEVICES

In order to design devices for optimun processing the received

signals must be recorded (remembered). The latter is necessary both in

designing optimum filters and incoherent storing devices. Delay lilies,

potentialoscopes, magnetic recording devices, etc., are used to solve

numerous problems. There are electrical and ultrasonic delay lines.

In the electrical delay lines the effect of finite time of propa-

gation of electromagnetic oscillations in a system containing storing

devices of electric and magnetic energy (capacity and inductance) is

used. The delay lines may have concentrated and distributed storing

devices. Besides the distributed inductance of the winding there is a.

distributed capacity between this winding and the screen in lines with

distributed storing devices. Usually, the screen consists of longitu-

dinal conductors that are insulated among each other in order that the

transverse currents do not shunt bhe distributed inductance of the wind-

ing nor give rise to excessive losses. On the edges the conductors are

Joined with each other.

Electric delay lines guarantee a delay of the order of some micro-

seconds (in several cases also of the order of several tens of micro-

seconds). The greater the time delay the narrower is the frequency band.

With the help of the ultrasonic delay lines a delay up to some mil-

liseconds for a frequency band of the order of some megahertz (or even

tens of can be obtained. Such a great delay is guaranteed by the fact

that, first of all, the electric oscillations are transformed into

ultrasonic ones. The latter are delayed, and then again transformed

into electric ones. With the limited dimensions of the lines great de-

lay is achieved since sonic speed is considerably lower than the velo-

city of light. The direct and the inverse piezoelectric effects appear-

ing in the case of quartz crystals, barium titanate, etc., are used to
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transform electric oscillations into mechanic ones, and vice versa.

The direct piezoelectric effect lies in the fact that when there

are electric charges on the surface of a crystal capacitator it is

compressed or stretched depending on the sign of the charge. Inversely,

the compression or stretching of a crystal gives rise to el,;ctric char-

ges (inverse piezoelectric effect). Consequently, applying a variable

electric field along the axis of a crystal capacitor mechanic oscilla- 
'

tions cf the crystal, which are then transferable to a sound-conduct-

ing medium, can be generated. Inversely, if mechanic oscillations ar-

rive from a sound-conducting medium electric oscillations can be ob-

tained. Special amplifiers will be inserted in the channel cf the delay

line in order to amplify these oscillations.

The magnetostrictive effect is sometimes used to excite ultrasonic

oscillations in thin scund-conducting bodies. This effect consists in

the fact that mechanic oscillations which will then be propagated in

the sound-conducting medium are excited if a variable magnetic field

acts along a sound-conducting body made of an appropriate kind of me-

tal (e.g., nickel). Thus, the magnetostrictive delay line is a modifi-

cation of the ultrasonic one, in which the oscillations are excited by

the magnetostrictive rather than by the piezoelectric effect. The in-

verse magnetostrictive effect may be used to pick up oscillations.

Recently, the piezoresistive effect, i.e., an effect which lies in

the variation of the resistance of the transition layer at the boundary

with a semiconductor if the latter is compressed or stretched began to

be used to transform electric oscillations into ultrasonic ones. This

fact permits ultrasonic oscillations of super-high frequencies to be

delayed with small energy losses and guarantees the transmission of

broad-bend signals.

Potentialoscopes are devices in v;hich electric oscillations are
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recorded on a dielectric target in the form of a potential relief. For

this purpose the target surface must have the property of secondary em-

ission. This implies that more than one electron leaves the target if

a high-energy electron falls on it. The more electrons hit the target

the more electrons will leave it and, consequently, the greater is the

positive charge remaining on the target. If the electron beam arises

along the surface of the dielectric target and at tne.same time the in-

tensity of the electron flow varies also the charge distribution at the

target surface will vary accordingly. This means also that the electric

W oscillations are recorded on tlhe dielectric target in the form of a

potential relief. If the electric conductivity of the target is 3uffi-

ciently small, the potential relief is maintained all the time needed

for optimum processing. The measurement of the potential relief may be

carried out ty various methods, among them with the help of a special

counting electron beam.

If magnetic recording is used the electric signal remains in the

form of a magnetic relief on the magnetic tape or drum, which move in

the neighborhood of the magnetic field of the recording coil. In con-

V trast to the electric recording, the magnetic one permits an infinitely

great time delay to be obtained. The magnetic recording may be kept

for many years. The frequency band of this recording is, however, usua-

lly narrower than that of the electric one.

§5.7. INCOHERENT STORING DEVICES

When processing radio pulse packets with independent random initial

phases we must be concerned with the summation of these pulses after

the detector, or, in other words, with incoherent summation. Incoherent

summation takes place already in case the data are put out visully from

a radar indicator since afterglow occurs. In the case of automatized

output it can be realized with the help of aelay lines, potentialoscopes,
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etc.

In the case of visual output the pulses acting in different scan-

ning periods successively excite the same point of the screen. In its

effec~t, such a summation approximates the quadratic one though it is,

of course, different from the optimum.

The fact that there is no incoherent storing in the case of auto- j
matized output may considerably raise the level of the threshold sign-

al, even compared to visual output. Consequently, when designing an

automatized detection (or measurement) system one must try to make it

similar to an optimum processing system. As will be shown in Chapter 6, 1j.

the deviation from optimum summation in details, e.g., the replacement

of quadratic summation by linear one and vice versa, has ijo substantial

influence on the level of the threshold signal. On the other hand, it

is quite inadmissible to give up incoherent summation completely.

In order to realize incoherent

humui- AU e~ Bsummation in an approximate way suc-
A fa'xu kueep .id~ -B A

Ay-,,,Ab,,ut T + cessive recording on a potentialos-

KI cope with readout, magnetic record-

ing, etc., may be used.

wit A circuit of post-detector fil-

Fig. 5.14. Principle of£ con- ters with delay lines can be used for

structing a post-detector incoherent summation.
filter on a delay line with .branches. A) Packet of video
branes. ) Peacke of'viThus, e.g., a filter in the form
pulses; B) delay line.

of a delay line with a finite number

of branches connected to the summation device may be used for post-de-

tector processing of a signal having the form of a packet of radio pul-

ses. The number of branches from the delay line must be equal to the

number M of pulses in the packet, and the delay between the conliection

points must be equal to the pulse repetition period T (Fig. 5.14).
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At some instant of time a voltage (Fig. 5.15) equal to

is obtained at the output of the summation device, where Ui is the vol-

tage of the ith pulse at the output of the detector, and Ki is the am-

plification factor of the ith weight amplifier.

For U= Z2 and K 2/N0 expression (1) reduces to expression
Ki SiN (1) 1

[(13) §4.9]; for = and Ki S2/(S2 + N0/b0 ) expression (1) cor-

responds to expression [(15) § 4.9 ].

It is, however, rather difficult to realize an ultrasonic line

with a delay time to be measured by the duration of tne pulse packet.

Consequently, sometimes a delay only for one pulsing period is used,

but a positive feedback from the output cf the line to its input is

introduced (Fig. 5. 16).

A KO 1/0~
VI I I "

°.1 .iI i~
1 Ky 11jI . _

[; wit) , t') {t

uire iiJ t
Fig. 5.15. Process of optimum processing
in a post-detector filter. A) Pulse pack-
ets at the output of the weight amplifiers;
B) packet at the output o£' the summation
device.
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Fig. 5.16. Recirculator. A) Delay line.

The feedback factor p is chosen such that the pulse is only slightly )
weakened when returning to the input of the line after running through
a selay line with a transmission factor K. The process is then repeat--
ed (recirculation).

If the delay time of the line is equal to the pulsing period the
signal will be stored if a packet of pulses is fed to its input. In
this case the quantity K must be chosen such thac the first pulse is
not damped very strongly until the instant when the last pulse of the
packet arrives. On the other hand, if the quantity r43 is too close to
unity the superposition of noise will be amplified considerably whereas 4
no additional superposition of packet pulse6 will occur. Usually, one
chooses K = 0.8-0.95. 4

A

, ,

Fig. 5.17. Amplitude-frequency
characteristic of a recircula-
tor. A) For.

The amplitude-frequency characteristic of such a device is comb-

like (Fig. 5.17); it may be called comb band-pass filter for a packet

of video pulses.

We note that the recirculator (Fig. 5.16) may not only be used for

incoherent storage. If it guarantees stable work for sufficiently high

frequencies it can also be used for coherent storage as may be seen by L
comparing Figs. 5.17 and 5.9.

A practically important realization of incoherent storage is the

digital storage. In this case, the quantities to be summed are rounded
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off, first of all, in order that they can be

(z . expressed in terms of one or several binary

-- discharges. The simplest method of rounding

off lies in feeding the pulses to be summed

into a threshold circuit with a characteris-

tic (Fig. 5.18)
Fig. 5.18. On replac-
4.ng optimum incoher- -1o if Z>a,
ent summation by dig- ( 0. if Z&<a.
ital summation.

The voltage at the output of this circuit is

expressed in terms of only one binary discharge (0 or I). For the pur-

pose of comparison the optimum characteristic [see (5) §4.9] approxi-

mated by the characteristic #(Zk) is represented by the dotted line in

Fig. 5.18.

The threshold circuit may be considered an additional nonlinear

element; if it is switched on the whole circuit of processing will not

become fully optimum. On the other hand, the operations of processing

may be realized with the help of digital devices - memory and summation

devices. This permits information from a great number of integrated

pulses from a single gated target to be stored. The digital memory of a

binary discharge (0 or 1) may be realized with the help of triggered

circuits in electron tubes or transistors having two stable states of

equilibrium. Recently, the use of ferrites and ferromagnetic films has

become widespread, for this purpose.

In order to detect a target the number obtained after summation

must be compared with the corresponding threshold, i.e., as a whole,

the detection circuit will have two thresholds (Fig. 5.19a).

The diagram of Fig. 5.19a shows that, first of all, the detected

pulses enter the first threshold circuit. To its output an M-pulse dig-

ital summation device is connected. It is implied that it realizes the
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exme V.e creme ,;

a

H UmflgaCO5 *

b

Fig. 5.19. Double-threshold circuits of digital storage, a) With con-
servation of information on all M pulses of the packet; b) with conser-
vation of information on a number of pulses m < M. A) First threshold
circuit; B) or; C) digital summation device for M pulses; D) second
threshold circuit; EF)if; G) first threshold circuit; H) or; I) digital
summation device for m < M pulses; J) second threshold circuit; K) if;
L) if.

memory and summation operations and is analogous to a circuit with de-

lay line as to the functions it performs (Fig. 5.14), but, in contrast

to the latter, requires compulsory dropping of obsolete data. After the

summation device there is a second threshold circuit with a figure

threshold n.

As a whole, the dgtection of a whole packet by means of a double-

threshold circuit is recorded if and only if the threshold level of the

first circuit is exceeded by, at least, n pulses of the M pulses that

are possible. M possible pulses are here understood to be the entirety

of all successive pulses of the packet which correspond to a certain

range section.

Figure 5.19b shows a simplified variant of a double-threshold cir-

cuit. As before, the digital summation device is intended to the memory

and summation of the excesses over the first threshold, but for the

smaller number m < M of the successive pulses of the packet. This im-

plies that the solution on the presence of a target is adopted even if

only during the duration of the packet the level of the first threshold
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is exceeded by n pulses of the m pulses that are possible.

The choice m < M considerably simplifies the circuit, particularly

t if m is small (e.g., m = 2, 3); this means, however, a certain devia-

tion from optimum processing.

It is in place here to carry on the analogy of the work of the

digital summation device (Fig. 5.19) and the summation circuit (Fig.

5.14). The replacement m < M is eqiiivalent to ar appropriate reduction

of the number of branches and the length of the line in this circuit.

In this case the peaks of its frequency characteristic (see, e.g., Fig.

5.17) are broadened, which impairs the signal-to-noise ratio. Or else,

we may say that the signal-to-noise ratio is impaired since the energy

of the packet is not fully made use of (m < M), which gives rise to

energy losses. These losses are, however, partly filled up (see §6.4).

jAs a matter of fact, in order to detect a packet it is sufficient to

exceed the second threshold if only for one group m of successive puls-

es, for a total number of pulses in the packet M > m.

§5.8. ON THE USE OF THE PHENOMENON OF DISPERSION IN DELAY LINES IN THE

CASE OF OPTIMUM FILTRATION OF BROAD-BAND RADIO PULSES

In §§ 5.3-5.7 a number of examples of the use of delaying devices

and, in particular, of delay lines aiming at pre- and post-detector 'op-

timum processing was given. It was understood that distortions of the

signals are undesirable. In this section the possibilities of a profit-

able use of phase-frequency distortions in delay lines will be men-

tioned.

Before analyzing the application of distorting lines it is expedi-

ent to premise a brief consideration of the frequency characteristics

of nondistorting lines. A delay line for which the input and output

voltages are connected by the relation
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where c and t are constants will be called perfect.0

The corresponding spectral densities are connected by the relation

gam. (1) = Cg,. (1) e- r"It, ,"

from which the complex frequency characteristic K(f) = gv (01 , W

is determined. The amplitude-frequency characteristic of the perfect

delay line corresponding to it is uniform

IK(fI-J-const,

and the phase-frequency characteristic is linear and passes through

zero (Fig. 5.2Ca).

arg K() ,2 [t0. 1:
er;K(fJ ,:A

'e

* .~

lf . "

I /Au E famYf

Fig. 5.20. Phase-frequency characteristics and frequency characteris-
tics of the group delay time of nondistorting (a, b d, e) and distort-
ing (c, f) delay lines. A) gr; B) gr; C) gr maks; DI gr min; E) min;
F) maks.

In the case of a high-frequency delay line working in a compara-

tively narrow frequency spectrum around the carrier frequency f0 undis-

torted reproduction is usually understood in a narrower sense. The re-

quirement of reproducing the delayed envelope except for a constant
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initial phase without distortion

uI. (t - et

is made; the requirement, however, that the initial phase of the vibra-

tions should be conserved for an arbitrarily chosen initial point of

the envelope is not made. Such a delay is obtained in the case of an

ampltude-frequency characteristic which is uniform in the nieighborhood

of the carrier frequency f0 (within the limits of the signal spectrum),

and in the case of a linear (within the same limits) phase-frequency

characteristic. The phse-frequency characteristic itself does 
not nec-

essarily pass through zero (Fig. 5.20b) such that

arg K(1) - argK (.o) -2.to (f--fo), (1)

where, generally,

arg K(jo) 02a1o.

The extremely narrow spectrum around an arbitrary frequency f0 is

called a group of frequencies, and the delay time of the envelope cor-

responding to it the group delay time tg. Within the limits of a fre-gr

quency group a linear approximation of any phase-frequency characteris-

tic arg K(f) may be used. Keeping only the first two terms of the Tay-

lor expansion

arg (l =arg K(f .)J (I -.) arg K (1.) (2)

21 comparing (1) and (2) and identifying t with t we obtain
gr 0

-2~,= dr argK(,).

Replacing the arbitrary frequency f0 by f we find the following

final expression for the group delay time
I d

try -- - r. -rr arg K (3)

The preceding result (1) may now be treated in the following way.

In order to reproduce the signal envelope without distortion the group
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delay time must remain unchanged within the limits of the whole fre-

quency spectrum of the signal (Fig. 5.20d, e).

In the case of optimum filtration it is not always admissible to

strive for an undistorted reproduction of the envelope. A nonlinear

phase-frequency characteristic of the delay line may be used to compen-

sate immediatel, the phase-freguency spectrum of the signal, without

use of any intermediate branches from the delay line.

For this purpose the group delay time in the line must vary in the

frequency range of the signal according to some law, e.g., to a linear

one (Fig. 5.20c, f).

The inconstancy of the group delay time for di.fferent spectral

components is classed among the phenomena of dispersion of propagation

velocity. Delay lines with variable group delay time are, therefore,

termed dispersion delay lines.

As is known from §4.11, optimum filtration of broad-band radio i:

pulses gives rise to their compression in time. The compensation of the

phase-frequency spectrum, being part of this filtration, is also con-

nected with pulse compression. Moreover, it is just the compensation of

the phase-freque:cy spectrum of the signal which is the main reason for

the compression, since it leads to a simultaneous superposition of the

harmonic components (Fig. 4.7) and to the formation of a peak of the

compressed radio pulse. But the choice of an optimum amplitude-frequen-

cy characteristic, while reducing the individual spectral components of

the signal (in order to weaken the noise), may even lead to a contrac-

tion of the spectrum and to a widening of the compressed pulse. In the

case of broad-band radio pulses this broadening is substantially over-

lapped by the compression owing to the considerable compensating action

of the phase-frequency characteristic ari K(f).

The concept of a variable group delay time permits the compression
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mechanism of broad-band radio pulses also be treated in another way,

i.e., as that of pulses whose spectral widening is achieved by frequen-

cy modulation within the pulse. A line with a characteristic tgr =

= t gr(f) as shown in Fig. 5.20f, delays high frequencies to a greater

extent than low ones. Let us feed to it a pulse whose instantaneous

frequency varies from a higher one at the beginning to a lower one at

the end of the pulse. Thus, higher frequencies act earlier in the given

case, but are delayed to a higher degree, and lower frequencies appear

later, but are delayed to a lower degree. This yields the reason for

the combination of all frequency groups and the formation of the com-

pressed pulse. Obviously,

1. t(l) + -, const. (4)
is the condition for such a combination, where t v(f) is the moment at

which the instantaneous frequency acts; for the sake of simplicity, we

assume that its variation is monotonic.* The duration of the compressed

pulse in case the phase shifts are fully compensated is inversely pro-

portional to the width of the frequency spectrum.

* The dispersion delay lines may be described not only with the help

of the characteristics of Fig. 5.20, but, as before, also with the help

of pulse-response characteristics. Since the delta function acting in

* taking up this characteristic may be considered the superposition of

groups of different frequencies these groups are delayed relative to

the instant of action by different times, in the case of a dispersion

line. For the example considered (Fig. 5.20f) groups of high frequen-

cies are delayed to a higher degree and groups of low frequencies are

delayed to a lower degree.

The pulse-response char'acteristic proves to be frequency-modulat-

ed: at the beginning it is followed by lower, and finally by higher

frequencies. At the beginning there are higher frequencies in the pulse
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of the signal for which this characteristic is the mirror image, but at

the end there are lower frequencies, which corresponds to the conclu-

sion on the character of the signal compressed by the line which we

have obtained earlier.

The different dispersion delay devices yield characteristics

tgr (f) differing by the operating frequency band fmaks-f min and by the

drop of the group delay time t -t within the limits of thisgr maics gr min

band.

The super-high frequency dispersion delay systems in radio wave- *

guidesimay guarantee very broad frequency bands fmas fmln but with a

comparatively small drop in the group delay time t -t m The

latter is explained by the fact that the values of the group delay time

are determined by the duration of the high-frequency oscillation period

and by the number of oscillation periods relative to which the delay

takes place. Since the latter is usually limited it is difficult to
guarantee a great group delay time in the caoe of very small values of

the nigh-frequency oscillation period.

Greater variable time delays may be obtained with the help of

electric delay lines with distribute! or concentrated parameters work-

ing in an intermediate frequency range.

Still greater variable time delays, but for smaller frequency

bands, may be achieved by making use of ultrasonic waveguides having

the shape of tapes or cylindrical wires and made of an ultrasound-con-

ducting material.

§5.9. CORRECTION OF THE SHAPE OF THE COMPRESSED RADIO PULSE ENVELOPE

If the nonlinearity of the phase-frequency spectrum of a radio

pulse Is compensated by the phase-frequency characteristic of an opti-

mum filter or a dispersion delay line the envelope of the output volt-
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age is completely determined by the shape of the output amplitude-fre-
quency spectrum. As was shown in §4.11 an effective pulse compression

takes place in the optimum filter in the case of a rectangular ampli-

tude-frequency spectrum of a width of A >-.L Minor lobes, however, ap-

pear besides the major one. The level of the greatest of them is about

22%. The same situation is, apparently, given in the case of a linearly

frequency-modulated radio pulse whose spectrum is similar to a rectan-

gular one (see §7.7). The existence of minor lobes of the envelope

("residues") may sometimes aggravate the resolution of two targets that

are close to one another.

The level of the minor lobes may ie lowered by changing the shape

of the amplitude-frequency spsctrum. In particular, if the amplitude-

frequency spectrum is almost bell-shaped the compressed pulse also has

a bell-shaped envelope whose duration is inversely proportional to the

spectral width.

It is not advantageous to pass over immediately from a rectangular

spectrum to a bell-shaped one at the expense of suppressing a consider-

able part of the spectral components of the signal owing to losses in

the signal-to-noise ratio and to a considerable widening of the short-

ened pulse. Consequently, the amplitude-frequency spectrum is partly

rounded off in order to suppress the minor lobes, but, if possible,

without considerable widening of the shortened pulse or impairing of

the signal-to-noise ratio.

By way of example, the passage of a rectangular amplitude-frequen-

cy spectrum with a band of Af on a carrier frequency fo through a fil-

ter with a linear phase-frequency characteristic and an amplitude-fre-

quency characteristic of the form

K(!)-=a+2bcos2%! 1-_ (1)
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(where a = 0.5 and b = 0.25) leads to energy losses of 1.72 db (the

calculation is analogous to that given in §5.1) and to a widening of V

the major lobe of the compressed pulse by 1.2 times. In this case, at
calculated minor lobe level of 2.4% is already guaranteed. For fix.. 0.54

and b = 0.23 the calculated level of the minor lobes is reduced to

0.16% with losses of only 1.34 db, but with a widening of the major

lobe by 1.5 times.

A pulse-response characteristic of the form

corresponds to the frequency characteristic (1) or if t o = 1/Af

v~)=b() aS JL) (2)

The characteristic (2) is realized with the help of a summation "

device to which the input and the banches of a nondistorting line of

delay by, respectively, I/Af and 2/M f are connected, in which case the

summation will be carried out with w-.iLghts equial to, respectively, b,

a and b. A device with a pulse characteristic (2) is, therefore, called

a weight processing device.

A weight processing device for a radio }'i se with a complex rec-

tangular spectrum may be replaced by a reson& ce amplifier with a char-

acteristic similar to a bell-shaped one and a ')and on the level (0.05-

0.1) which is somewhat broader than the freqcu;'ncy band Af of a rectan-

gular spec'urum.

Weight prccessing may be used not only in the compression of fre-

quency-modulated, but also in that of phase.,iianipulated radio pulses.
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• ,! Manu-script [Footnotes]

Page
No.

141 By way of example, in the case of an electric nondispersive
delay line a continuous capacity output whose shape corres-
ponds to the given pulse-response characteristic (or to a
pair of mutually supplementing outputs connected as a differ-
ential circuit) may be used.

162 Condition (4) may be-obtained more rigcrously from [(12)
§4.4], using the asymptotic principle of the stationary
phas

[Transliterated Symbols]

136 OnT = opt = optii.l'nyy = optimum

138 c = s = signal = signal

138 n = p = pomekha = noise1 138 = ef = effektivnyy = effective

138 m = i = impul's = pulse

138 MaKC = maks = maksimal'nyy = maximum

145 3 = z = zapazdyvaniye = delay

145 B =IX vykh = vykhod = output

145 BX = vkh = vkhod = input

159 rp = gr = gruppa = group

162 B = v = vozdeystviye = action

163 MHH min minimal'nyy = minimum

-166-

- - 7Z ~ Q~ 1>1i--4 ~



Chapter 6

QUALITATIVE INDICES OF OPTIMUM PARAMETER

DETECTION AND MEASUREMENT DEVICES

§6. 1. STATEMENT OF THE PROBLEM

The best qualitative detection and measurement indices (in a sta-

tistical sense) can be obtained only by optimum processing of the re-

ceived oscillations.

In the case of detection, such an index, in particular, is the

correct detection probability D, calculated for different ratios of

signal energy and spectral noise density at the fixed false alarm prob-

ability F. With optimum detection this has the highest value.

In the case of measurement, a typical qualitative index is the

root mean square error, which can also be calculated for different val-

ues of the signal energy to spectral noise density ratio. For a given

signal modulation law, the optimum measurement device gives the minimum

root mean square error.

The increasing demands made on detection and measurement enforce

a continuous improvement of the quality of the processing of the re-

ceived signals. Hence the. qualitative indices of optimum systems are of

great interest because they are the limit which one must strive to at-

tain by approximating the non-optimum processing to optimum. The mate-

rial in Chapters 4 and 5 shows that such an approximation is entirely

possible.

In the analysis of the qualitative indices we shall start out with

the assumption that optimum processing is achieved. The qualitative in-
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c. dices are then independent of the concrete method of which this proc-

essing is achieved. In view of the fact a great number of calculations

requires an enormous effort, we shall carry out in detail only the

simplest ones, with the aim of illustrating the method of analysis. The

most simple case in detection theory is that of a signal with complete-

ly known parameters. We shall begin the analysis of the qualitative de-

tection indices with an examination of the simplest case.

§6.2. CHARACTERISTICS OF OPTIMUM DETECTION OF A SIGNAL WITH COMPLETELY

KNOWN PARAMETERS

Optimum detection of a signal with completely known paameters

consists in a comparison of the correlation integral with the threshold.

In the absence of noise the correlation integral

z= Sx(t)y(t)dt

can be assumed only two values:

_) 3in the presence of a signal,

in the absence of a signal,

and the detection will always be error-free.

If noise is present, the correlation integral is a random quantity

which can assume any values independently of the presence of a signal.

The case of szgnal transmission and false detection then becomes possi-

ble. In order to calculate the corresponding probabilities, we deter-

mine the distribution law of the random quantity z under condition that

signal and noise or noise only are present.

First let us point out that the correlation integral, being the

limit of the linear combination of Gaussian random quantities, is also

a Gussian random quantity.

In order to ascertain the distribution law of this quantity we
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must find its mathematical expectation j{z)=- and scatter D{z}=v un-

der two conditions, the presence and absence of a useful signal.

The mathematical expectation of the correlation integral we find -

as the integral of the integrand of the mathematical expectation

--M{z} [ x(t)y(t)dt= S x() j(Ftdt.

The scatter of the correlation integral, in turn, will be 4:

v0= D(z)=M&(z-)
2  c x(t) ly(t) - yy)]1d4

Under condition of the presence of a useful signal we have

i-w =x()+n nt=x()

and

- .,(td~ ,(1l) :

and in its absence i()=--O=- and z = 0. It is obvious that in both

cases y(f)-y(t)=n(t) applies.

By replacing in the expression for D(z3 the second power of the

integral by the product of two identical integrals and then proceeding

to derive the double integral, we find

v 2 =D4 ( ... dt x ()x(s) (t)n (s) ds.

By substituting the value of the correlation function for white

noise n(fn(s--2(-s) and carrying out the integration, we finally ob-

tain

• Q2 = D {z)=, -"* je (2 )- i

The value vo2=D(z) thus obtained is valid not only in presence but also

in absence of a useful signal. It depends on the energy of the expected

signal in either case because the expression of the correlation inte-

gral contains the expected signal x(t).
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Fig. 6.1. Curves of the condi-
tional probability densities
p (z) and p (z) of the values

of the correlation integral.
a) p; b) sp; c) E.

Knowing the mathematical expectation and scatter, it is easy to

write the conditional probability densities of the Gaussian random

quantity z in absence and presence of the useful signal

a.

-a-s 
(3)

p(z)== e 'o

Pc(z)= ' e 0 (4)

The two distribution laws pp (z) and psp (z) are represented in Fig.

6.1. The decision on the presence of a signal is taken if z > zo, which

is possible not only in presence of a signal but also in its absence.

The probability of the threshold value z0 being exceeded in absence of

a signal is the false alarm probability

1;@
F=Pu(z>zJ~fp(z)dz. (5)

The probability of the same event in presence of a signal is the cor-

rect detection probabilityIr4
D P,.x (z>zj =Spc. (z) dz. (6)

The areas in Fig. 6.1 corresponding to these probabilities, are shaded.

The expression for the calculation of F and D with an accuracy

corresponding to the specification are solutions of a one-dimensional
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problem. This is due to the fact that after the calculation of the cor-

relation integral the multidimensional problem is reduced to a one-di-

mensional problem. Applying the normal distribution law, the formulas

for F and D can be expressed via the probability integral

D =0,5 [1-- ( ) (1

The expression (7) shows that the false alarm probability F is un-

equivocally defined by the ratio of the threshold level z and the root

mean square value

of the noise component v of the correlation integral

V --- I ()x(t)d1.

It follows from the expression (8) that the correct detection

probability D depends also on the magnitude of the relation

In the following we shall term this quantity detection parameter.

We recall that the quantity _ is numerically equal to the signal-noise
voltage ratio at the output of the optimum filter.

Introducing now the parameter

qs=

and using the relation

", ¢,0(-- u)=- 0-¢().

we bring the expression for the correct detection probability D into

the form

D=-0.5[1+ +0(q-q.). (10)
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The family of curves D(q) at different values of qo is shown in

Fig. 6.2. It is readily seen that the family of Fig. 6.2 is analogous

to the family of Fig. 1.9 for the one-dimensional case. At q = q0 the

value is D = 0.5 and at q = 0, D F. The magnitude of F depends only

on qo; hence the curves q. = const are at the same time the curves F

= const. The correct detection probability D at a given false alarm

probability F is the greater, the greater the detection parameter q. A

decrease in the attainable value of F, due to an increase in the

threshold level, results in a shift of the detection curve to the

right.

* Using the detection curves, we can find

-T l ithe threshold signal. A signal is termed

threshold signal when it can be detected at a

1AJ VIA I 1 given false alarm probability F0 with a given

* ~~r I3II correct detection probability D0. The threshold

Fig. 6.2. Detection signal is characterized by its e (or Pow

curves for a signal er) which can be calculated if we know the
with completely

- known parameters. threshold value qporog of the detection param-

eter. The magnitude of qporog is determined by

means of the detection curves.

Assuming, for example, that we wish to achieve the probability D

D = 90% at F = F = l0- 3 at optimum detection of a square radio pulse

.with the duration -i with a completely known parameter. By means of the

curves of Fig. 6.2 we find qporog - 4.4, which corresponds to an energy

of the threshold signal of

The power of the threshold signal then is

r-- -- ' 12-x .7
- 1'22to

• . . , . _, , .,d 1, ,2



If the power of the signal P > P or its energy is > 3porog'
-porog prg

then at F = F0 the value is D > DO. _

The detection parameter q!V29/ N depends solely on the signal en-

ergy and the spectral noise density. Hence it is imanaterial which form

the signal has, pulsed or continuous, and by which law it is modulated,

and the possibility of detecting it at optimum reception with given

values of D and F is determined only by the ratio of signal energy to

spectral noise density.* The latter conclusion is of fundamental sig-

nificance.

§6.3. CHARACTERISTICS OF OPTIMUM DEfECTION OF SIGNALS WITH RANDOM INI-

TIAL PHASE AND RANDOM AMPLITUDE AND INITIAL PHASE

With optimum detection of a signal of the above discussed form the

quantity --~2? is calculated and compared with the threshold ZO.

Then we have

,..= tx 1,(1) dt,

where, in turn,

y (t) =Bx (, P)+ n (;);
.x X () o + x,(t) s in

where p(B)=8(B-I) is valid in presence of a signal with random initial

phase (B = 1); p(B)=2Be- ' in presence of a signal with random amplitude

and phase (B = 1); p(B)=&(B) in absence of a signal (B = 0).

For any fixed B we find in analogy to the results of the preceding

section

fB.9 Csn ;
z,.=B x (t. x,. (1) dt= ,=_ os .

63 dsin p

The random quantities zI and z are not correlated, because their

- 1.73 -
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mixed central moment

(z-7) (Za- ) dt 3 n(t)n(s) x, (t) x,(s) ds

• ~-0 -0

is practically zero. In fact, by using 1(9) §4.4] and integrating over

s, the double integral thus found can be reduced to an expression of

the form

x, (t J'x.x',,

which contains as cofactor the integral of the product of the two os-

cillations phase-shifted by 7r/2 with slowly varying amplitudes and

phases, which is practically zero.

Using the uncorrelated condition of the quantities zI and z2 and

the normal law of their distribution, we obtain the two-dimensional

conditional probability density

p ,, z1, B)=p (z, P. B)p(z iP. B)-

('.-.)' (a, 0

20

Assuming that ;=Zcos and z,--Zsin , where Z=/Vz I Z2, we go over

to the new variables of the two-dimensional probability density

p(Z,?l,,B)=p(;,,,jP,B) 6(4z, ,)

0 (Z, 1)

where

6.*(zs.'z,) cos siny -dJ(Z, ) '-Zsin? Zcos7 I

which is the Jacobian of the transformation.

This probability density will be

,p(ZjP)=-e Z.

Integrating it over -T and using [(9) §3.3] we find the one-dimensional

conditional probability density Z in presence of a signal with fixed
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parameters and B

p (Zl, B)=Sp (Z,,p ,B) d?-- I ("z -9e  0'
0 (2)

Averaging with respect to 0 and B, we find the expression for the

sought-for probability density

2@ oP (Z) t=.-Jdfp(Z B) p(B) dB. (3)
0 0

Actually this probability density is conditional because its form

varies depending on the distribution p(B). Hence the further calcula-

tions must be carried out separately depending on the condition of

presence or absence of signal and the form of the signal. By substitut-

ing the corresponding expressions for p(B) and carrying out the inte-

gration, we obtain:

a) in presence ,of a signal with random initial phase [p(B) =

= 6(B - 1)]

pa n(Z)=4e 2, a(14)

b) in presence of a signal with random amplitude and initial phase .

[p (B) 2-,2

Po , Z) -__, (5)

c) in absence of a signal [p(B) = 5(B)]

P. (Z)- 'e, (6)

We observe that under the conditions b the integration is carried out

by using the table formula [(7) §3.4].

Figure 6.3 shows the curve p (Z) of the distribution Z in pres-

ence of a signal and noise and the curve for p p(Z) corresponding to the
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presence of noise only. The curve Pp (Z) has been plotted for the rela-

tively small q = 2. The greater tha detection parameter q, the more do

the curies psp (Z) and p p(Z) differ.

The shaded areas under the curves in Fig. 6.3 to the right of the

abscissa Z0 correspond to the correct detection probability D and the

false alarm probability F. Then
i o oo t+S*

D Sp. .(Z) dZ = JI. (qs) e 2 ds, (7)
z. 41o 0 4"G S

iiF~p(Z) dZ se (8)
)~,fl =S-eds=

where qs--

The relations (7) and (8) respectively define the family of the

detection curves D(q) and the connection between the parameter of this

fc.mily qo and the false alarm probability F. If, using (8) we express

_q via F, we obtain an expression for the family of detection curves,

2 el whose direct parameter.is the false alarm probability F:

D ==f js)e- 2 ds. (9)

Figure 6.4 shows the curve p (Z) of the distribution of Z insp
presence of a signal. with random amplitude and initial phase and noise

and alsc the curve pp(Z) which corresponds to the presence of nc-se on-

ly. The correct d, ,iection and false alarm probabilities correspond to

the shaded areas and will be:

,+,Go (10)
D=Sp..(Z)dZ=e (0

02

F-==P"(Z)dZ-e - (11)
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Excluding q 0 from the relation (10) by means of (11), we obtain

D =,+ (12) .

Figure 6.5 presents the calculated detection curves for three cas-

es: 1) a signal with completely known parameters; 2) a signal with ran-

dom initial phase; 3) a signal with random amplitude and initial phase.

The curves for the second and third case were calculated by means

of the formulas (9) and (12); the curves for the signal with completely

known parameters correspond to the curves presented earlier in Fig.

6.2. The curves for the signal with random initial phase are shifted

I ,(Z)

/ t!
U.0.

F ZO I g z - zZ 2

Fig. 6 3. Curves of Fig. 6.4. Curves of
the conditional prob- the conditional prob-
ability densities ability dersities
p (Z) and p (Z) cor- pp(Z) and p (Z) cor-

p sp pspf
responding to '%he de- responding to the de-
tection of a signal tection of a signal
with random initial with random amplitude
phase. and initial phase.

relatively to them to the right, i.e., in this case a greater signal

energy is required for achieving the desired qualitative detection

indices.

The curves for the signal with random amplitude and initial phase

are particularly strongly shifted to the right in the range of large

values of correct detection probability. This is connected with possi-

ble fadin±g in presence of random signal amplitudes. In order to attain
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Fig. 6.5. Detection curves for the signals: with
completely known' parameters (dash line), with ran-
dom initial phase (dotted line) and with random
amplitude and initial phase (thick lines).

sufficiently high correu.t detection probabilities in presence of suchii fading, a considerable increase in the mean signal -nergy is required.*

Conversely, at low correct detection probabilities (D _ 0.2) amplitude

fluctuations facilitate detection and the curves are shifted to the

left.

§6.4. DETECTION CHARACTERISTICS OF AN INCOHERENT PULSE PACKET' WITH

LINEAR- QUADRATIC AND DIGITAL SUMMh1TTON

Let us turn to the detection characteristics for a signal in the

form of a packet of incoherent radio pulses.

It was shown in §4.9 that the law c'f optimum post-detection proc-

essing for a norifluctuating packet can be approximated to a quadraticI or linear relationship. The quadratic approximation is correct for low

si gnal-noise ratios for every pulse, for example, when their energy is

versely, the linear approximation is closer to the optimum for large

178,
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excess of the energy of each pulse over the noise energy.

Quadratic processing is always optimum for a fluctuating signal.

We observe that a widely used summator such as the screen of an

electron beam tube approximates the square processing to a certain de-

gree. The nature of the processing depends also on the operating regime

of the detector (linear, quadratic).

The voltage at the output of an ideally quadra'tIc summator can be

represented in the form

u=u=+ U2+...+ u2,

and that for a linear summator

U=V,+U,+...+UM.

Here 11 U2 , ..., UM are the amplitudes of the first, second and Mth

pulse, respectively. In the absence of a signal these amplitudes are

independent random quantities, obeying the Rayleigh law. In the pres-

ence of a signal the distribution of each of these amplitudes varies.

Knowing the distribution law for each amplitude, we can find the

probability densities p S(U) and p p(U) for the magnitude of U in pres-

ence and absence of a signal, respectively.*

Integrating the probability densities p (U) and pp(U) within the

limits from the threshold value Uporog to -, we can find the correct

detection and false alarm probabilities and estimate the gain obtained

by incoherent summation of M pulses as cbmpared with the case of single

pulse reception.

The calculation curves for the estimation of the gain from inco-

herent summation of a nonfluctuating packet with a rectangular envelope

are presented in Fig. 6.6a. These curves have been plotted for the

fixed values D = 0.5 and F = the thick line for linear, and the

dotted line for quadratic summation. The number of summed (integrated)

pulses M (from M = 1 to M = 104 ) is plotted on the ordinate, and the
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necessary excess energy of a single pulse over the spectral noise den-

sity at the optimum filter input on the abscissa. The amount of the ex-

cess of 13.5 db at M = 1 corresponds to the point F = 10710 and D = 0.5

on the detection curve for the single signal with random initial phase

(Fig. 6.5).

The slight difference between the thick and dotted curves in Fig.

6.6a shows that at a low false alarm and high correct detection proba-

bility the transition from quadratic to linear summation practically

does not alter the threshold signal. This means that both above-consid-

ered f6rms of nonoptimum processing approximate the optimum processing

I.. (CU,).

at high signal levels to the linear and at low ones, to quadratic sum-

mation, respectively (see §4.9). Here C is a constant depending on the

noise level.

ilfill
Fig. 6.6. Curves connecting the values of the threshold energy of a
single pu~lse of a rectangular pa cket with the number of pulses M: a)
For linear (thick line) and quaratic (dotted line) summation (D =0.5,

F = 10710); b) for incoherent (thick line) and coherent (dotted line)

summation (D 0.9, F 1 C). 1) Number of pulses, M.
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The use of integration of a large number of pulses lowers the

threshold level of the energy of every pulse in the packet. For exam-

ple, if we go over from a single pulse to 10, the threshold level is

lowered by 8 db, if we go over to 100 pulses, by 15.5 db and to 10,000

pulses in a packet, by 25.5 db.

An analogous curve for the estimation of the gain from incoherent

integration is given in Fig. 6.6b for the probabilities D = 0.9 and

F = 10'- . As comparison of the curves in Fig. 6 .6a and b shows, the re-

quLa;ement D = 50% and F = 1010, on the one hand* and D = 90% and F =

- i0 - on the other, are practically equivalent. In either case, the

incoherent integration gives almost the same gain in the threshold en-

ergy of each pulse, i.e., the corresponding curves in Fig. 6.6a and b

practically coincide. It is found that if we use one of them, we can

plot an approximate analogous curve for any values of D and F by shift-

ing it relative to the point 13.5 db to the right or left. The shift

should correspond to the change in the threshold energy of a single

pulse when passing from D = 0.9 and F0 = lO T to new values of D and

F. In other words, the r !ative change of the threshold energy due to a 0,

change of D and F is practically independent of the number of pulses in

a packet. Writing the function relation between the threshold energy

and the quantities D., F and M as

(1).~~~(D. F M),(1)

we can use the approximation

y(D.F.M) (D.F.I)

(D. .. M

or in decibels

* (3)

Formula (3) pan also be used for an approximate estimate of the

influence of harmonious fluctuatio:., i.e., to make a correction for
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these fluctuations at given D and F from the curves Fig. 6.5.

A comparison between incoherent and coherent integration is of in-

terest. It is easy to see that coherent integration gives a greater

ain because the possibility of detection in this case is defined by

the ratio of the energy of the entire packet to N0. Hence when going

over from a single pulse to 10, the threshold energy of each pulse is

reduced 10 times (i.e., by 10 db and not by 8 db, as with incoherent

summation), upon transition to 100 pulses, 100 times (i.e., by 20 db

instead of 15.5 db), etc. The corresponding straight line for coherent

integration is shown in Fig. 6.6b by a dotted line.

. Figure 6 7 is a diagram of the losses

4 t .. in decibels du-Lng incoherent integration.

Whilst the osses are still relatively small

a : i with a small number of pulses, they can be-
-'U, a 14 I I II II00 I

4W11 ,O too come quite marked if the number of pulses in

Fig. 6.7. Energy loss- the packet increases. For example, for 10

es in decibels with
incoherent integration pulses the loss is equal to 2 db, and for
as compared with co- 100 pulses, the losses an.ount to 4.5 db.
herent (D = 0.9, F

10-7). a) Loss, db; This notwithstanding, the gain from in-
b) number of pulses,
M. coherent integration of the pulse packet

must be used in all cases where coherent in-

tegration is not possible.

7n conclusion let us examine the detection characteristics of an

incoherent packet of radio pulses with digital accumulation.

We shall assume that the detection is achieved by means of a two-

threshold circuit working in accordance with the law n out of m, where

the number m is equal to the number M of pulses in a packet. This

means that the decision concerning the presence of a target is taken it

more than n pulses from M possible exceeds a certain amplitude thresh-
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old. In other words, the linear or quadratic pulse summation is re-

placed by counting the number of pulses exceeding the threshold.

Assuming the pulse packet to be rectangular, we designate the 4
probability of the threshold value Do by any pulse of the packet being

exceeded and the probability of this threshold being exceeded by a

false pip F0 . We observe that all packets are detected in which the

number of threshold exceeding pulses Is k > n. For every k there can be

k
CM such packets, and the probability of the threshold being exceeded by

k pulses from one such packet or of the threshold not being exceeded by

the other M - k pulses will be D (1 - DO )T -k. Hence the probability of

correct detection is

D( 
i 

-)
D( 4

k~n

For n = 0, D is always 1 because in accordance with the binomial

formula the above-written sum changes to

ID.1 - D.)]" 1.

Analogously,

M

where the quantity n must be larger than zero because otherwise F = 1.

If the pulse packet does not fluctuate, the quantities D0 and FO,

entering into the formulas (4), (5), can be found by means of the de-

tection curves for a singke signal with random initial phase. Then, if

the energy of the entire packet is equal to E, one must introduce the

energy 31M into the calculation when determining Do on the basis of the

detection characteristics. -

Let ub illustrate the above-given relationships by means of the

simplest examples.

AssumLUg te detect-ion is carrie out for a number of pulses in



the packet M 2 according to the rule "two from two" which is the

case, for example, when a coincidence circuit is used. In this case

D=D'and 0 o

Then, for F = l100 and D = 0.5, we should have F0 = l0-
5 and

0.7. By means of the diagram (Fig. 6.5) we find ( )1I1.5 db, i.e.,

11,5 +3== 14.5 db.

Thus, the same qualitative detection indices D = 0.5 and F = 0

are achieved with a threshold signal of 14.5 db as against 13.5 db with

coherent integration. In this case the losses incurred by digital inco-

herent'processing amount to only 1 db.

If for a number of pulses M = 2 detection were carrted out in ac-

cordance with the rule "one out of two," somewhat inferior results

would be obtained. In fact, in this case

D=2D-D2, =72F-F .

applies.

Then for F = 10710 and D - 0.5 we should have F0 = 0.5.10-10 and

DO  0.3. By means of the curve (Fig. 6.5) we determine (),13 db or

--p 16 db, i.e., the losses have increased.
VNO

Let us present the analogous relations for the rule "n out of

three" :

for the rule "one out of three"

D= D. (I -V*)3+ 3Dc (I1- D ) D ;

for the rule "two out of three"

D = 3D~O(1-D,)-+ D,;

for the rule "three out of three"
! D=D'o.

As a more detailed analysis shows there exists for each M an opti-

mum value of noot, for which the gain as compared with coherent inte-
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gration is a minimum. Figure 6.8 shows the loss curves for digital

post-detection integration as a function of the number of integrated "

pulses for n = nopt n = 1 at F = 10-6 and D = 0.5. The dotted line in-

dicates the design loss curve for quadratic pulse accumulation. Using

these curves one can estimate the losses in digital post-detection in-

tegration at m = M.

If the number of accumulated pulses is m < M, there will be other

losses in addition to those connected with the application of the rule

"n out of m." These losses can be roughly estimated in the following

manner. The relation m' = M/m gives the number of independent observa-

tions, at each of which detection is carried out. The situation is

LI II.

4 C II

EE!J- E7 I tl

b vurIIJ CI. I I

Fig. 6.8. Energy losses in deci-
bels during digital (thick
lines) and quadratic (dotted)
accumulation. a) Losses; db; b)
number of pulses, M; c) opt.

somewhat analogous to thdt obtaining with detection according to the

rule "l out of m'." Hence a rough estimate of the additional losses can

be obtained from the diagram Fig. 6.8 if m' = M/m is plotted on the ab-

scissa and the count is carried out along the line n = 1.



§6.5. QUALITATIVE INDICES OF OPTIMUM MEASUREMENT OF THE PARAMETERS OF A

SIGNAL WITH RANDOM INITIAL PHASE (GENERAL CONSIDERATIONS)

The mean risk equal to the root mean square of the measurement er-

ror,

has been chosen as the basic qualitative index of optimum measurement

of the parameter a.

Because a systematic error is absent with optimum measurement, the

expression (1) characterizes at the same time the magnitude of the er-

ror scatter.

The formulation (1) implies an averaging of a double kine (see

§1.6), namely: with respect to the possible values of the parameter a

and the possible values of the estimate of a*. The precise value of the

optimum estimate corresponds to the center of gravity of the post-ex-

perimental distribution

aM{/, (0}. (2)

The averaging (1) can be carried out in any desired sequence. If we

carry it out first with respect to a for the fixed realization y(t),

and this means, also for the estimate of a*t, the root mean square er-

ror thus obtained will be equal to the scatter of the post-experimental

distribution D{ fy(t)}, as in §1.6. By averaging this value with respect

to the possible realization y(t) we can obtain the quantity 
eskv .

Let us limit consideration to signals with random initial phase

against the background of a superposed white Gaussian noise. The equa-

tion [(16) §2.7] of the curve of the post-experimental probability Qen-

sity during the measurement of the parameter a of such a signal can be

represented in the form (see §3.3)

"(! ) 1 f2ZpIg(1)= )_e,_, ( (3)P[ l~f~l KP(a) e Nv. , .r
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Here the quantity Z=Zy(t)Ila is equal to the modulus of the complex

correlation integral

Z- •Y(XNa)dt (4)

Substituting

Y(t) =X(1, a.o)+ N(t),

where a0 is the true value of the parameter, unknown to the observer,

into this integral, we can separate the signal. and noise parts

-0 (5)

Then

Z=iZo+ZUl. (7)

One of the possible r,-lations of Z and a for a certain realization

y(t) is shown in Fig. 6.9a. This diagram corresponds to the case in

which the detection parameter is q = If it is assumed, for ex-

ample, that the lag time is measured, the curve (Fig. 6.9a) can be re-

garded as the envelope of the summary signal and noise voltage at the

optimum filter output as a function of time. The corresponding curve of

the post-experimental probability density is shown in Fig. 6.8b. The

signal peak which is already noticeable in Fig. 6.9a is more pronounced

in Fig. 6.9b.. This i3 in consequence of the fact that the relation

10(u ) is close the exponential, and u = 2Z/N0 in the region of the peak

is considerably greater than unity.

The cor.esponding curves for the case q < I are shown in Fig.

6.10a and b. Here we have in mind that the signal is weak and hardly

visible amont the noise pips. In expression (3) we then have eO-i.

It is important that there is also Io(u) 1 because u = 27/N 0 << 1 is
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Fig. 6.9. Example of the rela-
tionships zI(t)1al- z() and
p[,lvy(f) at q > 1.

valid owing to the smallness of the expected values of X(t, a) in rela-

tion (4). Hence the small pips Z(a) are almost completely obliterated

after the operation Io(u) (Fig. 6.11).

It follows from this that the approximate equality pfajy(t)]KVp(a),

where the magnitude of the constant K. is found from the standardizing

condition, is fulfilled at very small values of the expected signal

q c 1. Integrating the right and left parts of the equality within in-

finite limits, we obtain Ky = 1. This means that the post-experimental

,probability density is equal to the pre-experimental:

• (8)

a

I
I.I-

Fig. 6.10. Example of the re-
lations zIf(t)Ij-Z(I) and

p[l-l(t) at q < 1.

- 188 -

• -. . • ... . .. - ,' ,- - , : - ..- - '- ' -' . . .. - . . - . . . . . . . - : " ' -
:



i AN.

61",

Fig. 6.11. Explanation
of the smoothing out of
the pips in the cur'e

p[()IY )] at q << 1.

a very weak signal practically does not give any information in-.

crement. The scatter of the post-experimental distribution also coin-

cides with the scatter of the pre-experimental dtstribution. For rec-

tangular approximation of these distributions, as in §1.6, it is equal

to

{ . 12= (9)

Because the magnitude of the scatter is independent of the realization

y(t), we obtain after averaging for the realizations that we also have

2 =(is a,)
Sao 12j

Let us now go on to an analysis of the post-experimental distribu-

tion for another extreme case, the case of a very strong signal (q "

>> 1). The area under the post-experimental distribution curve (see,

for example, Fig. 6.9b for q > 1) is divided into the area in the re-

gion of the peak (a = ao0 ) and the area along the "noise track." Relia-

ble measurements are possible only if the first area is considerably Si

larger than the second, which is the case with a fairly strong signal.
Because of this circumstance, we can use of approximation of the entire

curve p[uly(l)] its approximation in the vicinity of the peak, which de-
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crea'es fairly rapidly on both sides of it.

In this vicinity, the argument of the modified Bessel function is

u = 2Z/N0 >> 1, so that we can use its asymptotic expression

I. (U)~ (10)

By virtue of the exponential nature 6f tne relation (10), rela-

tively small inc.rements of the argument u can lead to considerable mod-

ifications of the function I0 (u). As is evident from Fig. 6.12, a small

section of the apex of the curve Z(,) is transformed almost into the

whole curve f,.£Z(%). For such a small section of the curve it is easy

to obtain a suitable app.oximation. If the function Z(ca) is analytical,

it is sufficient to limit this Go three terms of the Taylor expansion

z 1 (Oj + Z' +,. 1 -- 2.) Z" (. '-,. (l

which corresponds to an approximation of the apex of the parabola. The

quantity Z"(a0 ) is expressed by a negative number because the apex is

convex.

Iva.

Fig. 6.12. Explanation of the
transformation of the apex of
the curve u = 2Z(a)/N0 into the

main part of the-curve p[(aly(t)]
at q >> 1.
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Completing the second and third addends in (11) to the complete_.

square, we transform the equation of the approximate parabola into the -,°

A = (,i2)jZ"(aO)j the coefficient which characterizes the curva- !'

M~ 0

tue fth pe f hepraoa;1 I

of the curve) which is slightly shifted with respect to 0 because of

0I

the action of noise;

BZ(ao -- [ (o]/2jz"(ao)-j is the ordinate of the apex.

The abscissa he corresponds to thendsi poal t te cofmpet

oZpt = 'M .

Using the approximation (1 2) and the Asymptotic expression (10),

we transform the post-experimental probability distribution (3). Owing

to the narrowness of the peak of the curve (q >> 1) we may neglect the
variation of the denominator of the asymptotic expression (10) and con-

sider that p() = onst. Me stipuEate further tnat the quantity ( -

is constant, which corresponds, for example, to the case of measurement

of the lag time (or the Doppler shift of the frequency). The post-ex-

perimental d (striaobuteon of the probability (3) is tthen reduced to ap

normal distribution '

The coefficient C is deteined on the basis of the etandardizing con-

dition

where a is the standard deviation. Its square (the scatter) is found

from the relation it () t s ot x sn ,
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:In the general case the dependence of the sig~hal energy O(a) on the

measured parameter must be considered. The post-experimental density
2(o)- -3 (a)

(3) isn the gr al s the exponential function eng i.e.

it is a function of the difference _ If this difference is

expanded into a Taylor series, the relation (14) is replaced by the re-

lation

. 2 (15)

If the signal is sufficiently strong (q >> 1), the modulus of the

correlation integral Z(a) can be replaced by the modulus of its signal

part Zo(s)=IZ()I, which is determined from the relation (5). The rela-

tion (15) then assumes the form

(16)

Let us illustrate the use of the relation (16) in the case of the

measurement of the amplitude of a fairly strong signal. In this case

where the functionTo(t) describes a signal with a single

amplitude. If we designate the energy of the latter by

2@

the modulus of the signal part of tho correlation integral will be

-40

and the energy of the expected signal 9(a)-' 3*.

From the relation (16) we obtain

1 23,

from which follows
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o= (17) If?
The right part of the equality (17) represents the signal-noise

ratio at the optimum filter output At single amplitude. The result is

2not altered by the averaging of a with respect 'to the realizations.

§6.6, ERROR SCATTER OF THE OPTIMUM MEASUREMEN-T OF THE LAG-TIME OF A
SIGNAL WITH RANDOM INITIAL PHASE AT q >> I

Assuming that X(t, )U(t-a)e r , i.e., that the lag time is the

measured parameter a. We consider that 9(a)=3 , i.e., we do not take

into account the energy signal as a function of the lag time. Then dt

q>> 1, by virtue of [(16) §6.5], we have

(1)

Taking into account [(5) §6.51 and noting that [e "*l-I, we

have

l..=id ft .,Aj

We introduce the spectral density c.(f).of the complex amplitude
-qt) L 41

Olf)=- 5 U(1)e-'"1.

-,-1

Then.ii

11(1 -a &1 e tdt =Ge(f) e-'',

i.e,., the lag a is taken into account as the lag factor e- r' . To the .

convolution (2) of the time functions corresponds the integral of the A? ',

product of the spectral densities. Hence

Z. (a 0 G* (f)e'&1(-ft (3)
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In order to avoid long operations, we find the second derivative

function Zs(a) directly from its Taylor expansion. We obtain the re-

quired -terms of this expansion by representing the exponential function

by a series and limiting the expansion to the member of the second pow-

,er

1":- j1l +,4( - + J (..k) (4)

Wi introduce the signal energ

and the above-given moments of its energy spectrum, the first and

second

M.=M ff-- " .(6)
I G I) I'ld

111 (7)~d.
10I(1) Idt

By substituting (4) into (3) and using (5).-(7) we obtain the ap-

proximation of the integral by the first terms of the series

Z a (a) . .91 + j2 , (,, - a.) M, + -, j2 1C(, 1 , .o.

By recalculating the modulus, we find

Z.e,3j/, 1s- 2M.(-,.)'JI + 4'M ( .)'.

Limiting the expansion to the svcond-order t erms and using the

formula for the approximate extraction of the root., we find

Z,(,) 3[1 2 ,(Ma- M(-,),,

By comparing the expressio4 thus obtained wi°2.h the sum of the

first terms of the Taylor expansion [(11) §6.5] we, find
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and

The difference AMi,{f)-- I{f} in relation (8) is analogous to the

scatter and characterizes the width of the energ "

pectrum of the signal. If the frequency f0 is taken as carrier, corre-

sponding to "the center of gravity" of the amplitude-frequeney spec-

trum, then A,{fY-0. The width of the spectrum is then characterized on-

ly by the second distribution moment.

On this assumption, we have

The expression (1) for the scatter of the post-experimental error can

then be transformed

'= ' (9)

where Af, i3 the effective width of the signal spectrum 4.-
Afa2:Va~f).(10)

Thus the standard deviation a of the measured lag time is inverse-

ly proportional to the detection parameter q and the effective spectral

width of the signal &f.
!

The relation (11) is valid for q >> 1 if the relation Z(a) is analyti-

cal in the vicinity of its maximum value, i.e., for a wide class of

signals. The degenerate case of measurement in the case of a discontin-

uous signal will be examined in §6.7.

By way of an example, let us calculate the standard deviation a of

tile measured lag time for a bell-shaped radio pulse with complex enve-

lope U(I)- '(  The spectral density of this envelope is des.ribed by

-195 -
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fan expression of the form

Then

S df

Here, wb have A* '. v/'r and

Where 'r and Af, respectively, are the pulse duration and width of its

spectrum at the level e'. .46.

For example, at T 2 microseconds (Af = 0.5 Mc) and q = 8, the

root mean square error of the optimum measurement b the lag time of a

single bell-shaped pulse is a-.2=0,14 microseconds.

§6.7. DEGENERATE CASE OF LAG TIME MEASUREMENT AT q >> 1

Assuming that the lag time of a radio pulse with a rectangular en-

Velope is miasured. In this case we cannot use the parabolic apDroxima-

tioh [(11) §6.5] because the function Zs (a) corresponds to a rhombic

envelope at the optimum filter output and has an inflexion at the apex.

We can, however; introduce the linear broken approximation (Fig. 6.13)

The principle of this approximation consists in

Fig. 6.13. Lin- neglecting the noise component. Moreover, the de-

ear br6ken a'p- scription of the apex in the region I-4. M is
proximation of
Zs extended to the region - The values of the

post-experimental probability density in this re-
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gion are still small. However, the approximation (1) for this region

/ WI(-' I i4
gives a negative value, The exponential function of this quantity tends

to zero in proportion to the increase in the ratiol"-I

Using approximation (1), the expression for the post-experimfental

probabilit~y density can be represented in the formi

where the coefficient K is determined by the standardizing conditions.

The scatter of the post-experimental distribution then is

a*

m _II -._I

or

(2)

Thus, the standard deviation -- in this -case proves to be in-

versely proportional to the square of the detection parameter qs- -

Replacing the pulse energy 9 by its power P and the duration Ti" we

find

The quantity a thus obtained which characterizes the potential erroys

of the measurement, is independent of the -pulse duration and is deter-

mined only by its power.

The above-described relation must be treated with a certain cau-

tion when the rectangular approximation of the envelope is applied to

real radio pulses with flat fros'ts. The smaller the calculated quantity

ao, the greater are the requirements for the steepness of the fronts',

i.e., the closeness of the real to an ideal pulse.
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8. THRESHOLD EFFECT IN MEASUREMNT

If the detection parameter q is fairly large, the peak area of the

post-experiimental distribution curve exceeds considerably the area

along the "noise track." The magnitude of the standard deviation a then'

a varies relatively slowly as a function of q (as 1/q in the nondegener-

ate case and 1/q2 in the degenerate case). If a decreases, the area

:ii 71/,. lii

a4 W

"" • J • a.,., v

Fig. 6.14. The relations a = a(q)
(thick line) and al = ai(q) (dot-

ted line), plotted with and with-
out taking into account the noise
tracks.

along the "noise track" becomes commensurable with the peak area. The

measurements become unreliable, the magnitude of a increases rapidly,

considerably exceeding the values calculated in §§ 6.6-6.7. The meas-

urement errors are then due not so much to the superposition of the

noise on the signal as to the effect of the spurious noise pips, i.e.,

the effect of false alarm. This effect is the more noticeable, the

wider the possible limits of parameter measurement.

Assuming a rectangular law for the pre-experimental distribution

i of the parameter a, the measurement limits can be characterized by the

differer.e a2 - a 1  Having in mind the measurement of the lag time, we

designate the difference a2 - al = T. Whilst at a large a the standard
deviation a is of the order of 1/qAfe, at small q it is close to T/V12
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i.e., It varies approximately qTAfe times. This quantity can be very

large and thus at relative-y small changes of q, a sudden variation of

a is observed (Fig. 6.14) as soon as q comes near to it. Threshold val-

ue q .porog

In order to estimate this phenomenon quantitatively, we approxi-

mate the resulting post-experimental distribution curve

P [a I Y (Y) = p, (0) 7 POPS (CS) + p ,,. . (

Here the probability density pl(a) approximates the distribution law in

the vicinity of the peak, and the probability density p2 (a) the dis-

tribution law which applies to the "noise track." The probabilities P1

and P2 . whose sum is equal to unity, describe the ratio of the areas in

the region of the peak and the "noise track." The approximation p2 (a) i
can be taken as rectangular and without broeak in the peak area, because

in this region P2 « pleven at q = qporg provided that TAf >> 1. tj

Let as connect the scatter of the resulting distribution with the

scatter of the partial distributions = D[a). To this end we calcu-

late the first and second moments of the resulting distribution

{A } I p (a) ddt - PaMs I (a) + PMs {w).

M. "a) 'p, ()d - P.M., ( + PMS.

Here Mll and M12 are the first, and M21 and M22 the second moments -of K
the corresponding partial distribution. By means of the first two mo-

ments we can calculate the scatter

D } Ma - M - (PsM,, + PzM,,) - (Patit + PM,,.-

Introducing the scatter of the partial distributions Dl(a) = M21-

2 2
M11, D2 (a) = M2 2  M12 and using the obvious equality P2 = 1 - Fl, we

obtain

(- P.) D. 4+ P.D.e+(0 -PS) Ps [MIS (a) Mat{)' 2
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If q >> 1, then P2 = 0 and DG) = Dl(a); however, if q << 1, then

P2 %5 1 and D([] = D2 (ca, i.e., the measurement is entirely unreliable.

Hence the quantity P2 is termed measurement unrellability coefficient.

In order to estimate the unreliability coefficient P2, we proceed

in the following manner. Starting out with the relation [(3) §6.5] we

represent P 2 in the form

PI_ 2 (3)

where the factor is )-Kp.e" and is the mean value of the mod-

ified Bessel function within the interval of the "noise track." The

factor X is found from the standardizing condition P1 , P2 = 1. Taking

into account [(3), (l0), (12) §6.5], we represent the quantity P1 in

the form

P II Z.: 3 A -

0.--:' '  +

The mean value 4('.) within the interval we replace by the mean of

(2) at an arbitrary point of the interval, whlch can be doneth e set

by virtue of the stationary nature of the proqess on "noise track." Us-

ing the expression of the Rayleigh law ,R - -+ , where ,.- ,

and the integral representation of the Bessel function [(9) §3.3], we

obtain after substitution of u = Z/v 0

( d; - ; .

* @0

Going over fro m the polar to Cartesian coordin aq, we find finally

W 2 di 'w22 '% d
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Thus,

P-. (4%.

For the calculation of X we have the equation

r2. N 81.
re 2 + me 1. (5)

where the coefficients A and B are determined in correspondence with

§6.5. Assuming tentatively in the region of the peak Z(a)z,(&), and taking

into account that 4(si-0, we obtain [see (8), (10) §6.61

2 . ..

Determining from (5) the factor X and

substituting it into (4), we find the final

".V r 4expression for the unreliability coefficient

PsI (6)

The curve for the unreliability coefficient

Fig. 6.15. Curves of in the function q for two values of the _prod-
the unreliability co-
efficient P 2 = P 2(q )  uct TArfe is represented in Fig- 6.15.
for two values of the .
fr wo T~ e . Because normally T~f, the reception
produce TAfe

threshold is reached even at small values of

the unreliability coefficient, when rTi.qle'e/P . In this case the expres-

sion for P can be represented in the form

Pa . T, f r q'.- . ( 7 )

Making use of the relation (7), we estimate the increase in the

scatter, due to the increase in the unreliability coefficient. Suppos- :

ing for the sake of simplicity that the measured value corresponds to

the center of the range of expected values, we assume in the formula

(2)
M -()uM;, {u4
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Substituting in this formula

T2-7

we ,find

or

1(8)

The curves 2 2 = const are shown in Fig. 6.16 in the coordinates

TAfe and q. These curves attest to the presence of a threshold because

relatively small changes of q can lead to marked changes in a2. For ex-

mple, a variation of _ from 7.5 to 6.8 at TAfe = 1000 results in a

variation of the ratio a 2/ from 1.1 to 10.
01

The presence of a threshold is due to the exponential nature of

the dependence of the ratio of the peak area to the area along the

noise track, which follows directly from the graph (Fig. 6.12). The

level of the threshold depends on the product TAfe characterizing the

number of resolved elements. This relationship is nearly logarithmic.

ut,

ie in s intescte

I V I - iM9 I " i

2/02D

Fig. 6.16. The curves q = q-(TAfe)

for different values of the rela-
tive Increase in the scatter

a2/1-due to the influence of the

noise trac:.
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The above-given analysis refers only to the simplest single signal

with random initial phase, but the regularities which have been demon-

strated apply to signals of a wider class, including signas in the I
form of packets of radio pulses with independent initial phases.

§6.9. ERROR SCATTER OF THE OPTIMUM MEASUREMENT OF THE DOPPLER FREQUENCY
FOR A SIGNAL WITH RANDOM INITIAL PHASE

Let us examine the case in which the measurea parameter of a sig-

nal with random initial phase is a Doppler frequency, *i.e., X(4.)-

SZI()e-121t . Assuming that q > q and that the measurement is nonde-
Porog

generate, i.e., that the second derivative Z"(a) exists and is a finite

quantity, we find the error scatter of the optimum measurement from the

relation [(14) §6.5].

The calculation results are analogous to [(7), (10), (11) §6.6].1

The standard deviation of the measured value is determined by means of

the formula

where Atkv is the equivalent signal duration.

At m}=O, i.e., when the time reading is carried out from the

"center of gravity" of the envelope U(t), we have

tss=2:V ,---t}.. (2)
Here M,{t)- is the reduced second moment of the signal energy dis-

tribution in time

. (3)

Jil(0 it dt

The greater the signal duration, the greater is the quantity M,{1}

and At i.e., the smaller is the standard deviation of the measured

value of the Doppler frequency.

203-1
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As An example we calculate the standard deviation of the Doppler

frequency in the reception of a bell-shaped pulse with the envelope

Li(!)_e8(LY. where ri is the pulse duration at the level e -LmO,46 . In

this casb we have

and

Then

IF= !

For example, if T 1 msec and q = 8, then aF = 50 cps.

We must pay attention to the fact that all the relations given in

this section refer to a case in whih the lag time is accurately kinown.

If the lag time and the Doppler frequency are unknown, the measurement

result'depends essentially on the structure of the so-called ambiguity

diagram of the corresponding radar signal. These diagrams will be con-

Sidered in the next chapter, which begins with a detailed analysis of

the required calculation relations. An analysis of the errors in simul-

taneous measurement of two parameters is given in Appendix 2.

Manu-
script [Footnotes)]
Page
No.

173 If Fm mF = const << 1 (§1.1) is given, and if F decreases

with increasing m, then q increases but only logarithmically
(see Figs. 6.2, U-5).

17.8 Or a transition to the emission of a main signal at two or
more carrier frequencies (see §3.6 and Appendix 1).
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179 An example of the calculation for quadratic summation is giv- -.

en in Appendix 1.

181 The probability F = l1 0  corresponds to a single microsecond
false noise pip in three hours of continuous operation.

194 Replacing G(f) by its expression via T(t) we can also show
that

I Itr)I dt

IU (ltj' dt

[Transliterated Symbols]

170 n = p = pomekha noise

170 c = s = signal signal

172 nopor = porog = threshold

172 m = i = impulfs = pulse

185 OnT = opt = optimal'nyy = optimum

186 CKB = sky = srednekvadraticnyy = rms

194 3 = E = energiya = energy

195 3 = e = effektivnyy = effective

203 eKB ekv ekvivalentnyy equivalent

kit
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Chapter 7

AMBIGUITY DIAGPAMS OF RADAR SIGNALS

§7. 1. FVLJIA FOR OPTIMUM PROCESSING OF THE RADAR SIGNAL WITH TARGET

MC1oT.ON CONTROL

Let us examine the expression for the reflected signal from a

point target

XQ)8(t-t)=U(t - t.,)vC 3-.(t -t+ (1)
where

tt is the present lag time,

U(t) and 9(t) are non-random functions,

e is the random iuitial phase.

The quantity .tt '_is a function of time if the distance r(t)

to the target varies during the sweep interval. The expected function-

al relationship can be conveniently expressed by using the Taylor ex-

pansion for r(t)

22

or

i's-i+ h-f(2)

Here we use the initial moment of the target sweep as the time

reading reference t 0; the quantities tz, vr and ar are the initial

signal lag time, the initial target velocity snd its initial acceler-

ation in a radial direction, respectively.

For most radar signals the fun:tions U(t) and cp(t) vary slowly as

compared with the high-frequency oscillations cos wt or .si,*vo. Hence

206
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the present lag time variation t does not vary greatly during the

sweep:4

(t ,°

Assuming further by virtue of the short duration of the sweep

that

a,P'< = ,r

we can neglect the influence of the acceleration on the phase of the

high-frequency oscillations. Expression (1) then assumes the form

where aA--_.- is the Doppler frequency, and p---%t - is the in-

itial phase which is generally a random equal probability quantity. The

expression thus obtained describes the signal with a random initial

phase and two unknown measurable parameters tz and a

The expression (3) can be transformed thus

.v(t)=x(t)cosP+x.,(t)sinp, (4)

where

.,,()=+ X (t)..t + . t).si (5)
In the case under consideration

X()U(t-)1 (6)'P. (1) =7 11t 1t) - O,,t.

For optimum detection and measurement, the magnitude

'2 Y1) * (t di(7)

must be calculated. -i"

Here Y(M=-Y(t)e") and X(t)=X(t)e 't are the complex amplitudes of

the received and expected oscillations. Taking into account (6), we

present the expression for l(t) in the form

-2-07 - -
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X *).= Q (,- 4,) e1 ',--. ,-', - t. e" ' (8)

By substituting this expression in (7), we obtain the formula for

the optimum signal processing with the target motion being taken into

accoount
r (t) U* (i - t.) e""' di

-S (9)

It must be remembered that the quantity Y(t) represents the sum

of the complex amplitudes of signal and noise

YQ)--U-t,'' +NQ () (10)

where tzO and adO are the true lag time and Doppler frequency of the

useful signal (at the moment t = 0).

In order to decide on the presence of a target, it is necessary

to compare for every pair of expected values tz and d the quntity

Z = Z(tz, Qd) with a certain threshold level. If the threshold is ex-

ceeded for any range of the values tz and id the presence of a target

is assumed. For the evaluation of the true values of the measured para-

meters those values of tz and Q are then used for which the magnitude

of Z is a maximum. The operations which are essential for the computa-

tion can be carried ",,tt automatically, by.means of correlators or op-

timum filters or both simultaneously.

Depending on the actual signal shape, the degree of accuracy of

the estimation of the lag time and Doppler frequency will differ. For

some signals the function Z(tZ, S1d) will be more smooth, for others it

will have a iharp peak. If noise is present, the measurement in the

first case will not be very accurate, in the second case it will have

a considerably greater accuracy. This function characterizes not only

the measurement accuracy but also the resolving power with respect to
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distance and speed.*

The problem is to determine the properties of the function

Z(tz, ad) for signals with different shape, which will b: referred to

in the following as ambiguity function.

§7.2. AMBIGUITY FUNCTION AND NORMALIZATION OF THE AMBIGUITY FUNCTION

We transform the expression [(9) §7.1] for the function Z(tz, Q)

by substituting in it [(10) §7.1] as has been done in chapter 6:

z (1, O,)IZ= 3 i O t. )+ z( 3 .O )I. (1l)

Here

n N, r i A) w cy ot

--t, on'i
Za(1, V.)-- S VN(1)U*(1t 3 e i. (3)

-00

In the relation (2) we carry out a substitution of the variables

and examine the functions

T/m, n)o f nct ion + 2=F) s (5)

The functions (2, F) and p ( , F), calculated for signals of dif-

ferent shape, we shall term amnbiguity functions and normalized ambigui-

ty functions, respectively,. of these signals. In place of the term ama-

biguity function, the term auto-.corre:lation function of the signal (some- '

times modulation correlation function) is also used.

Using the relations (2), (5), we have

After subsitution of the variables t tzo + s and ubstitution of

Ie 2.tFha---1 it becomes obvious that the function T('r, F) is independent

of the initial values t and S1d O " O :
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The axabiguity function T( , F) has the important property of

central symmetry
If Y- , -. = ,'I (t. F ).( 8

This can be verified by replacing in (7) - for T, -F for F and

substituting the variables t = s + r. Nothing that le 2 "'JlI , we ob-

* tain

e-a

The right parts of the equations (9) and (7) are identically equal

as modules of complex conjugate expressions, which leads to formula

(8).

The normalized ambiguity function p (TI, F) Js determined by the

relation (6) and in correspondence with (7) assumes the form

I 5L~U~s~cI~uads~(10)

IU(S) 1,ds

~-

The normalized ambiguity function p ( , F) also has the property

of central symmetry

.). (11)

In addition to the normalized ambiguity function p (T, F), the

normalized ambiguity function p 2 ( , F) is used sometimes. The values of

this flnction do not exceed p 2(0, 0) = 1, and it also has the proper-

ty of symmetry, i.e., p (-,r, -F) = p (-r, F). As will be shown in §7.4,

the function p2 (, F) has one very important property and its study is

thus of special interest.
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§7-. GRAPHIC REPRESENTATION OF THE AMBIGUITY FUNCTIONS p(t, F) and
2p (-r, F)

In the Cartesian system of p, T and F coordinates, the ambiguity

function p( , F) is represented in the form of a surface. Such a sur-

face foc the radio pulse with bell shape and constant instantaneous

frequency is shown in Fig. 7.1. In this special case, we have not only K
p(-r, -F) = p(T, F) but also p(-T, F) = p(-r, F).

We shall term the surface corresponding to the ambiguity function,

ambiguity surface. The geometrical solid bounded by the !urface p 0

and the ambiguity surface, we shall term ambiguity solid.

The ambiguity surfaces and solids can be constructed not only for {
the functions P(', F) but also for the functions p(T', F) (in the lat- A

ter case it is preferable to use the Cartesian coordinates system p2

T, F). The form of the ambiguity solid p( , F) or p2 (, F) depends only

on the signal shape. 4i

It is important that during the construction of the ambiguity so-

lid the noise term in formula [(l),§7.2] is excluded. If it were re-

tained, the form of the ambiguity solid would be altered upon transi- L

tion from one actual noise to another. At the same time one would also

observe a displacement of the apex of the solid, or, with sufficiently

intense noise, the appearance of false apices. However, if the ratio

of zhe spectral noise density to the signal energy is fixed and suffi-

ciently small, the nature of the ambiguity solid in the absence of noise

has the decisive influence on the accuracy of the parameter measure-

ment. The more concentrated the ambiguity body is along the axis T, the

more accurately can the lag time and the distance to the target be me- I

asured. The more concentrated the ambiguity solid is along the axis F,

the more accurately can the Doppler frequency and the radial velocity '

of the relative motion of the target be measured.
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Hence when we study the influence of the signal form on the ac-

curacy of measurement of the parameters, we shall be interested in am-

biguity solids, plotted without taking the noise term into account in

formula [(1)§7.2]. The latter is analogous to the replacement of the

quantity Z(c) by Zs(a) in §6.5.

In additioni to the clinographic re-

presentation ambiguity solids one can use

the representation of their outline by

*means of equal-level lines as is done,

for example, in topography. Such a re-

r/ presentation for the solid shown in Fig.

Fig. 7.1. Example of 7.1 is given in Fig. 7.2, whera the pro-

ambiguity surface and jections of the constant level lines p
solid (case of bell-
shaped radio pulse with const (or p2
constant instantaneous = const) are drawn on the

oscillation frequency), plane T, F. In this case only the two
lines of equal level p = 0.5 and p = 0..

have been drawn. The region encompassed by the lines p = 0.5 for which

p > 0.5, is regarded as a "high correlation" region of the received

and expected signals. This region is shown in black in the diagram.

The region 0.1 < p < 0.5 can be considered as a "low correlation" re-

gion and is shown in the diagram by shading. The area of the received

and expected signals with zero correlation has been left without shad-

ing or darkening. The outline of the ambiguity solid is thus represent-

ed by three level gradations forming the ambiguity diagram.

The number of gradations can be increased, but there is no need

for this in a qualitative analysis. Hence we shall limit outselves in

the following to the use of three gradaticns.
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Fig. 7.2. Standard representation of the outline of the ambiguity
solid means of level grading.

§7.4. VOLUME OF THE AMBIGUITY SOLID p 2(T., F)

it follows frcm the preceding discussion that it is sufficient

for the simultaneous decrease in the indeterminacy of the metering of

the lag time and Doppler frequency that the ambiguity solid has the

form of a sharp peak in the vicinity of the values T = 0 and F = 0.

0.4 interest in this connection is the magnitude of the volume V0 cr V 2

of the ambiguity solid T(T., F) or p2(1t.? F) and the dependence of thei

form of these solids on the signal shape.

Of the quantities Vp and V 2 we shall be interested in the fol-

lowing only in V 2, which is defined by the simple relation W..]
P

= %11

It 7. found that the volume of the ambiguity solid U 2 is a quan

tit which does not depend on the signal duration or on the law of mo-

dulation of its amplitude or phase. This quantity is equal to unity fr

any signal.
This can be proved by direst calculation of the volume V 2. By

2 p V2 4

substituting in (1) the quantity p (,, F) from [() §.2, taking in-

to account the obvious relationship

Of~~ the quniis V'J s ads'A it 2j we) shal beitersdihef

in which the right side no longer contains the module sign, we obtain

- "21-3 (1)
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Vt. V as dsJ= -

-*S LP- (S- 9 a U au-C

-XdadaddF)

where the integral over F is reduced to the delta function.

da 8-

Using the properties of the delta function, we find

V . U(s) d -] -

V" (u)W u(a -s) W(u)u,- -. )dud,..

Integration over r within infinite limits gives

S r(a-.)u(,-. d= S iua,-.d .=
Go

X . = iU(s) 'dg.

hence

-U SIUQ'du " dIU(s)',- IV (s)'ds

or

V. (2)

Because no limitations have been imposed on the form of the func-

tion U(t) in the derivation of the relation (2), it holds true for any

signal shape.

The relation (2) is a rigorous mathematical formulation of the in-

determinacy principle in radio location, according to which the volume
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of the ambiguity solid V 2 cannot be altered by any method of modula-
P 2

tion. This solid is like a heap of sand: by altering the form of the

signal, we alter the shape of the heap "but cannot get -. of a -.ingle ,

grain of sand" [15].

It is important that with unit volume of the ambiguity solid, its t
height does not exceed unity. Hence, if we compress the ambiguity so-

lid along the axis T, it flattens out along the axis F; if we compress

it along the axis F, it will inevitably flatten out along the axis '.

If it is required, for example, to have a narrow peak of the am-

biguity solid .t the origin bf the coordinates T = 0 and F = 0, the

entire remaining volume must be distributed along the plane T, F in

The form of a series of peaks or in a thin layer on a large- area.

§1.5. CROSS SECTION OF AMBIGUITY SOLIDS AND CHARACTERISTICS OF OPTIMUM

RECEPTION CIRCUITS

Among the basic circuits for the optimum reception of a signal

with random initial phase are the correlators and optimum filters, for

the given signal form. Several important characteristics of these

circuits are closely connected with the ambiguity solids of the cor-

responding signals.

In the correlation circuit (Fig. 4.2) with two quadrature chan-

nels the received oscillation y(t) and the 900 phaseshifted reference

oscillations xl(t) and x2 (t) are fed into the multiplier of these chan-

nels. If a signal with the parameters tz d is expected, then

x,., (1)= ± U- 4) C _S - ") +(- 4)1.

applies. Depending on the adopted realization of y(t) the fully deter-

mined voltage

is produced at the output of the circuit, wihich is expressed by complex
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amplitudes in accordance with the relation [(9) §7.1].

The performance of the circuit can be evaluated by supplying its

input with oscillations without noise with the parameters t and a

which are generally different from t z and d The initial phase of the

oscillations may be random, because it does not affect the output., With

an accuracy limited by a factor which depends on the amplitude of the

supplied oscillation, the output effect is characterized by the quan-

tity

This is nothing but the value of the ambiguity function calcula-

ted for fixed maladjustments of the parameters T = tz - tzO and 27rF =

Sd -dO supplied to the input of the circuit and the reference os-

cillations.

Hence the ambiguity solid p(T, F) of the signal characterizes

the dependence of the output effect for its optimum correlation cir-

cuit on the misadjustment of the two parameters.

If one of the maladjustments is fixed, the dependence of the out-

put effect on the other is characterized by a curve which is a cross

section of the surface of the solid by a plane. Fig. 7.3. shows the

curves p as a function of r at F = const, which are cross sections of

the surface p(r, F) by the planes F = const. Figure 7.4 shows the cur-

ves p as a function of F at T = const which are cross section of the

surface of the solid by planes T = cont.

In contrast to the correlator, the output voltage of- the optimum

filter is described by the time function w(t) and not by the single nu-

merical value Z. The performance of the filter is naturally character-

ized by the shape of the envelope of the output voltage in the absence

of noise for different values of d and ad0 of the expected and received
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Doppler frequency. By virtue of [(12) §4.6] we have for the envelope

WQl)=1+SoY(s)VUt-s)dsI.(1

P F S J '0 (0

'F r.0

Fig. 7.3. Cross sec- Fig. 7.4. Cross sec-
tion of the ambiguity tion of the ambiguity
solid by the planes F solid by the planes T =

= const. const. fr

In analogy to [(5) §4.6] we find the magnitude of V(t) = Vopt(t)

by means of the relation

Re IV.', (t) e]oo Re [CU* (t - f) e-1 (-.- 2A (.--t],

where c in the right part of the equation has been replaced by aO- "d

Hence

Vo... (t) -- u"(1.- 0 el ..-, (2 )

Considering that the input of the filter is acted on by a signal with-

out noise with a lag time tzO and the Doppler correction dO we have

Re [Y() el"'] =Re [U(- 4.) e'-l

hence

Y)= U(t- ) (3)

By substituting (2) and (3) into (1) and noting that

we find ,
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After substitution of the variables s tzO + e we obtain

W (t) -- LC i+ 1() e4t.+ 4Ax)Rdo

or
W(t) =CW (I - t,, -.; 1,. F). (5)

The relation (5) indicates that the shape of the signal envelope

at the optimum filter output in the absence of noise is described b

the cross section of the ambiguity solid in the plane F = const, cor-

responding to the given difference F of the true and expected Doppler

frequencies. The greater the true lag time tzO the later appears the

maximum of the voltage envelope at the filter output.

In the absence of a frequency separation of F, 'the maximum of

the voltage envelope corresponds to the moment of time tzO + to$ and

the envelope itself is determined by the cross section F = 0. The

more distant the target, the later the pulse at the filter output ap-

pears (Fig, 7.5). With frequency separation of F the shape of the pul-

se envelope generally changes because the filter becomes non-optimum,

the maximum of the envelope is decreased and its displacement is pos-

sible (dotted line in Fig. 7.5).

I tj~t* t; a.
a a

Fig. 7.5. Voltage envelope at
the output of the optimum fil-
ter for different values of lag
time and Doppler frequency. a) z.
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§7.6. AMBIGUITY SOLID OF A RECTANGULAR RADIO PULSE WITH CONSTANT INSTAN-

TANEOUS OSCILLATION FREQUENCY

As a first example, let us calculate and analyze the ambiguity

solid for -he radio pulse a(l)= "Re[V(t)e J"'4] with the rectangular en-

velope

.V (t)= v (1)= i1 f o<t<-, -
if t<0 ort>,,. (1)

For the calculation of the normalized ambiguity function we use

the formula [(10) §7.2]. Noting that, the denominator in this formula

is ti, we find

P(F)+tS U(s) Zr(s -c) e f2IFadi
S(2)

When we calculate the definite integral (2), like in the conclu-

sion [(16) §4.6] we consider the following four cases separately:

a) %-; b) -, O0; c) 0 <c<,; d) % .

The diagrams for the shifted cofactors U(s), U(s - ) and their deri-

vatives are shown in Fig. 7.6.

' ' U, , . ,
rn

I I

I " I U/sl V(.SI II_ _ _ -

s) a "b c )d ,

Fig. 7.6. Explanation of the calculation of the
normalized ambiguity function of a rectangular
radio pulse with constant instantaneous oscil-
lation frequency.

Combining the results for the cases "a" and "d" we have
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p(%,F=0 for$lI,.

For the cases -vi -T < 0 and 0 < T <T we obtain, respectively

F) di

All these results can be combined in a single notation

At' F = 0 we must evaluate the indeterminacy in formula (3). Re-

placing for small values of F the sine by its argument, we obtain

) Q for (4)

rQ f

Fig. 7.7. Cross section along the planes F = const of the ambiguity
solid of a rectangular radio pulse with const----nstantaneous osci-
llation frequency.

On the basis of these relationships, Fig. 7.7. shows p as a func-

tion of T for different F = const. These may be regarded as voltage en-

velope curves at the output of the optimum filter at a frequency sep-

aration of F in the carrier frequency. The detuning results in a dec-

rease in the peak value and a distortion of the shape of the envelope.

Figure 7.8 shows the corresponding relationships, giving p as a

function of F for different T = const.
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Fig- 7.8. Cross section along the planes Tr const. of the ambiguity
solid of' a rectangular radio pulse with constant instantaneous os-
c ilation freqjuency.

Fig. 7.9. Contour of the ambiguity so-
lid of a rectangular radio pulse with
constant instantaneous oscillation fre-
quency.

Each of these curves corresponds to the spectrum of a rectangular

video pulse with a duration of'

Both series of curves can be regarded as cross section of the sur-

face of an ambiguity solid (Fig. 7.9) by the surfaces T = const and F =

= const., Represerntations of the ambiguity solid by means of level gra-

dations for two different durations of the main pulse are shown in

Fig. 7.10 and 7.11. Compression of the ambiguity solid along the axis
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T causes a spreading along the axis F and vice versa.

ItI

Fig. 7.10. Standard representa-
tion of the contour of the am- Fig. 7.11. Standard re-
biguity solid of a rectangular presentation of the contour

radio pulse with constant in- of the ambiguity solid at
stantaneous oscillation fre- a pulse duration Ti which
quency. is shorter than in Fig. 7. 10.

§7.7. AMBIGUITY SOLID OF A RECTNGULAR RADIO PULSE WITH LINEAR MODU-

LATION OF THE OSCILLATION FREQUENCY

Let us now pass on to the radio pulse (Fig. 7.12) with linear

modulation of the high-frequency oscillation u(I)=Re[U(1Ie 2xj ] . having

a complex amplitude

u~t)=0, if f<Ofort>cx.

Vt The instantaneous frequency of such a pulse

varies linearly from fo at t =0 to fo + if = f0 + -i at T = Ti, where

Af is the frequency deviation.

The coefficient b in the formula (I) is thus expressed via the

frequency deviation Af and the duration T of the pulse:

(2)

The calculation of p(r, F) by means of formula [(10) §7.2] we

shall carry out by using the diagrams in Fig. 7.6, because the envelope

-222-

,- -, . . . . ._ . , J . . . ,' . . . . . 4 ,' ', - ' ' '

S - -.. p . .. ",' -' --- ":- - --C -- "" ". ,.



NI

remains rectangular. As in the preceding case, p( , F)= 0 at .

At - <6 and 0< % , respectively, we obtain

ti-I' t

p~.F) el---- (1-i)t+2%FII di

19

I .J bIL-b (-%)+2,cFiI dl t

:.]sin [(b' + F( .- J} [

Combining the results thus obtained

a and using the relation (2), we find
t_-- r- (3)

sin F I , 1, -I I
"r~~ ~~ or i1% ,,

Fig. 7.12 Rectangu-
lar radio pulse with 0 for 1i 1.
linear oscillation -
frequency modulation.
a) i. On the basis of the relations (3),

Fig. 7.13 is a plot of p as a function of

T for two values F = const, each of which can be regarded as the vol- V
tage envelope at the output of the optimum filter with detuning of F

with regard to the carrier frequency.

1I1

/I I\\ N

2 mrM r"4 -- a

Fig. 7.13. Cro s section along the planes F = const of the ambiguity
solid of a rectangular radio pulse with linear os--cillation frequency
modulation, a) i.
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Fig. 7.14. Standard representation of the contour of the ambiguity
solid of a rectangular radio pulse with linear oscillation frequency
modulation, a) i.

Figure 7.14 shows a representation of the ambiguity solid by

meansof level gradations. It is evident from a comparison with Fig.

7.11 that the ambiguity solid of a frequency-modulated radio pulse is

rotated relative to the ambiguity solid of a radio pulse without fre-
quency modulation by a certain angle, whose magnitude increases with

increase in the frequency deviation Af.

Let us examine the cross section of the ambiguity solid along

the plane F = const which characterizes the voltage envelope at the

output of the optimum filter. This envelope is considerably more nar-

row than the envelope of the main pulse. At zero separation F = 0

and the condition Wvo;Mi , the width of tbhe compressed pulse at zero

is 2/4f.

It can be seen in Fig. 7. 13 that a shifting of the compressed

pulses in time is possible at the frequency separation F. In absolute

magnitude this shift is A- and characterizes the velocity error

in the measurement of the lag time at the moment when the main pulse

begins to sweep the target. Velocity errors are typical for any pro-

cessing wrLich amoumts to taking the correlation integral. If Ti Fmax <<

<< 1 the shift is considerably less than the half width 1/Af of the
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compressed pulse and is thus not of any importance.*

§7.8. AMBIGUITY SOLID OF COHERENT PACKETS OF ..

One of the most widely used radar signals is a signai in the form"

of a coherent packet of radio pulses. As an exwnple let us consider

a packet with a rectangular envelope (Fig. 7.15, a). In this diagram

T is the duration of each pulse; T is their repetition interval, and2i

M, the number of pulses in a packet.

a) To- 'AN, T ..

b U I

Fig. 7.15. Explanation for the ana.-
lysis of the convolution integral in
the plotting of the ambigtity solid of
a rectangular coherent packet of radio
pulses. 1) i.

Let us determine the nature of the surface of the ambiguity solid

(',F)= lS UQi)W(t-ie 1 NP' dtl'()

limiting ourselves to a qualitative analysis of the relation (1) and

Fig. 7.15. We shall give special attention to a packet without modu-

lation of the phase or frequency of the carrier.

If the signals U(t) and U(t - r) are shifted by the time 1 .>T.=Mr.

the function p(T, F) will be zero. The same happens when 1%1<t, , but

the pulses of the shifted packets do not overlap.

Within the limits --To<r<T0  the ambiguity solid possesses a

series of peaks with a width of 2 i along the axis , which are shifted

by the pulse packet period T. At F = C every peak of the packet and

the envelope of these peaks have a triangular shape (Fig. 7.16) which L

can easily be proved.
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a

Fig. 7.16. Cross section along the
plane F = 0 of the ambiguity solid of
a rectangular coherent train of radio
pulses with constant instantaneous
oscillation frequency. a) i.

The presence of a large number of peaks of the function p(T, F) along

the axis T can lead to an ambiguity in the distance measurement. How-

ever, if the period of the pulse packet T > tz maks" the ambiguity

is eliminated.

Let us consider the behavior of the function p(T, F) along the

axis F. At T = const, the function p(T, F) is the modulus of the Four-

ier transformation of the product U(t)U(t - r). If T F 0 this product

coincides within the accuracy of a factor with the signal envelope

U(t) and, consequently, the function p( , F) describes its amplitude-

frequency spectrum.

As we know, the spectrum of the envelope of a packet of radio

pulses consists of several peaks which correspond to frequencies which

are multiples of the packet requency F7 = l/T. The width of each peak

at zero is determined by the duration of the packet and is equal to

2/To, while the width of the peak envelope is determined by the dura-

tion of a single pulse and is equal to 2/T..

Thus, along the axis F at T = 0, the ambiguity function also con-

sists of a large number of peaks (Fig. 7.17). The same will be the

case at II=T, Jf=2T , etc.

The presence of a large number .of peaks along the a.xis F can re-

sult in an ambiguity of the measurement of the radial velocity of the
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target, if the maximum Doppler frequency is greater than the recur-

rence frequency of the pulses.

The ambiguity solid of a coherent packet of radio sulses with-

out frequency modulation consists of a number of relatively narrow

e2a, distributed along the axis T as well as the axis F. Its contour

is shown in Fig. 7.18; by means of three level gradations. Because the

volume of the ambiguity solid V 2 = const, the volume of each peak de-
p

creases in inverse proportion to their total number but the ambiguity

of the target distance and velocity reading remains. This ambiguity

can be eliminated by a priori data (r< ac, F<MOHC) or as a result

of later processing of the radar information.

Fig. 7.17. Cross section by the plane
T = 0 of the ambiguity solid of a rec-
tangular coherent packet of radio pulses
with consbant instantaneous oscillation fre- -4

quency r = 0. a) i.

For a coherent packet of frequency modulated radio pulses the

blackened regions of high correlation are slightly sloped (analogous

to Fig. 7.14) remaining on the shaded vertical bands of Fig. 7.18. If

the frequency deviation N. is sufficiently large, the slope within

the represented section of the axis F is negligible. The length of

the peaks along the axis T then is no longer ji' "but ,j-. (as in

Fig. 7.14). Compared with Fig. 7.114 the ambiguity solid is divided into

narrower peaks which reduces the ambiguity with respect to T.
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As r

z Fig. 7. 18. Standard representation of the contour of the ambiguity
solid of a coherent packet of radio pulses with constant instanta-
neous oscillation frequency. a) i.

W-. 9. AMBIGUITY SOLID OF A NOISELIKE SIGNAL

In addition th the splitting up of the ambiguity solid into a

multiplicity of narrow peaks., another form of its modif:L-atic,,,, is of

interest. The ambiguit>f solid is compressed into a sharp peak with

a single height with the apex at T = 0 and F = 0 and the remainder of

the volume spread out over the maximum possible area of the plane

,F (Fig. 7.19).
Substituting the volume of the ambiguity solid V2 by the sum of

x2

the volumina of the peak V1 and the spread-out part V2, we obtain

V,<I. from the condition Y.-V,+'V.=I",.

If we could spread the ambiguity solid equally over the area of

the rectangle 2,,,2al then
V&-- =2%..Aj' < 1,

hence the height of the layer of the dispersed Part of the volume is

The quantity r i which enters into this formula., we can regard as

S- ~-228 -
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the total signal duration, and the quantity AJ- as the width of its

spectrum. These quantiies determine the limits of the ambiguity so]d. _

In fact, when the received and expected signals are chifted by more

than +Ti. the fun.ction p( , F) vanishes; at a Doppler shift greater

than the width of the spectrum, the correlation between the signals

is also disturbed.

The above reasoning must be considered as approximate because not

any signal can be simultaneously limited in time and in frequency.

However, if the product "Af. . It is desirable that this product mAf.

should be fairly large.

Let us discu:ss the possible methods of approximating this ideal-ttA

ized pattern.

As has been previously established, a signal of the above con- :, iI
sidered type should, on the one hand, have a duration in time and, on

the other, should extend over a wide band. The shifts of the signal 1

parameters T, F (relative to the expected) should in itself disinte-

grate the peak. A signal with linear frequency modulation, of a reg-

ular and relatively simple type, does not satisfy this requirement.

While the time shift with such modulation destroys the peak, the cor-

responding frequency shift may re-establish it. In order to obtain an

ambiguity solid as in Fig. 7.19, a certain randomness in the modula-

tion law is necessary.

Such a randomness can be observed for the noise section with the

duration T. with a frequency band 'f>-!- . However, with a pure

noise signal, it is hardly possible to achieve a constant level of p

over the entire rectangle 2,.2Af (with the exception of the peak). A

pure noise signal also has a variable amplitude which is undesirable

from the point of view of the performance of the generators at the op-

timum power level.
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Hence the "noiselike" nature of the signal is preferably achiev-

ed by a regular phase chaie within the limits of the radio pulse, i.e.,

by nonlinear frequency modulation or phase manipulationm,

Special codes have been developed

recently which enable an approximation

to a noiselike signal to be achieved.

Let the emitted signal consist (as in

s/# c tFig. 5.11a) of closed rectangular ra-

dio pulses with a duration T with

* .a high-frequency oscillations

Fig. 7.19. Contour of the (-1) %cos2%ft (k=1,2,3 .... (2)
ambiguity solid of anoiselike signal. a) i. where assumes values of 0 or 1. The

k

sequence of these figures charac-

terizes the law of the phase manipulation.

In order to obtain noiselike signals, the establishment of k

codes by means of "logic algebra" (Boolean algebra) has been proposed.

An example is the code described by the relation

ek=6Ale., h..$.-, (k>5). (3)

The symbol a. indicates "summation over the modulus two" which

is defined by the following Table, where the values of the components

are given in the upper line and left column and the result in the

corresponding diagonals:

o1

i.e., OO=O,o 0j=i, 1E0= .4j I=0 . (The last relation corresponds

to the clearing of the binary adder in connection with the transfer of

the binary unit to the following discharge).

- 230 -

-L~' 
. i:

r 4.~~ * P77",~ -

IV-,--."



As example we assume 1=I2= 3= 4=0 , and = 1, and we obtain
54

all the other values of k by using the formula (3). We then have

t.= E, (eC ED Z. E) E, I

etc. The corresponding code has the form

000011100110111110100oo01o01o1o11

If the law on which the construction of the code is based, has

been established correctly, then we obtain on the basis of m initial

elements (in this example m = 5) a code consisting of n = 2m - 1 ele-

ments (n 31). The further application of the law for k > n leads to

a periodic repetition of the code elements. Such codes have been given

the special designation zero sequence code with maximum duration or

binary pseudorandom codes.

Although the noiselike signals have the desired structure of an

ambiguity solid, they also have certain disadvantages. The same opti-

mum filter, without division into channels, cannot eliminate noiselike

signals which differ strongly in their Doppler frequency. In order to

make the reception of such signals feasible, the scheme must be multi- I
channel.

Outside the peak the level p of the zero sequence code (at produ-

cts mf which are not too large) is relatively high. It is bigger,

for example, than for a signal with linear frequency modulation. How-

ever, it decreases with increase of n, approximately as 'Vin

The.nolselike signals must be distinguished from the phase-mani-

pulated Lignals with lower residue level (p = 1/n) on the time axis T

with optimum processing. The latter are known up to n = 13 and can be
I -" . n xapl o

used for the separation of frequencies -An example of

such a signa and its optimum processing is given in Figs. 5.11-5.13.

Because noiselike signals have a residue level which decreases

only as 1i/'7 , their use is rational only at a fairly large number of
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elements n. For zero sequence codes a residue level (20+30) db or

(1/r)2 1*-10-') occurs only for n-2m-lo (100+1000) , i.e., at a

number of elements of 127, 255, 511, 1023 and over. This circumstance

causes great difficulties in the design of the optimum filter.

Henca modified pseudorandom codes have been proposed with a number

of elements n = 2m , characterized by the fact that the pulse character-

istic of the filer for these codes can be designed by u.sing only m =

log2n delay lines without any additional branches. For n = (128 1024)

the number is !,-(7+10) . The filter is built of single-type elements.

Fig. 7.20 shows the system of one (the kth) element of such a filter.

This element has two independent inputs and outputs and can be regard-

ed as a six-pole network. Every element contains a delay line for the

time 2
k lT (where k is the number of the element and T the duration

of the elementary code pulse) and two alegraic adding on circuits

which give sum and difference.

a

f4 0) MAtt --,-, t -- -

[ ,.~~----------- .---J

Fig. 7.20. Device of the kth ele-
ment of the optimum filter-?or a
modified pseudorandom code. a) or;
b) delay lie.

Let us connect the inputs of the first element (k = 1 and 2k -1 TO

= TO) and supply them with a radio pulse of the duration mo (Fig. 7.21
a).

At the output of the first and second adders we obtain two clo-

sed pulses of equal duration and respectively equal and different po-
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larity (Fig. 7.21 b).

0.4.. to,

b g AV) (V170t

. i " " -E .l

e (t) p~t

Fig. 7.21. Explanation of the performance of' the optifi m
filter and the forming circuit for the modified pseLudoran-
doia code.

Let us supply these pulses to the second element.

Twofmethods of connection ate possibl~ewithout inversion (upper

output othe irst to the upper input of t second, ower outpt of

the first to the lower input of the second) and with inversion. Fig.

7.21, c describes th- output voltages of the second element when the

connection is made without inversion.

The output voltages of the second element with inversion or with-

out inversion are fed injo the third element, etc. Figs. 7.21, d and

e describe the voltages at the outputs of the third and fourth elements

!in presence of inversion in both cases. The corresponding connection

scheme four elemerrts is shown in Fig. 7.22, a.

It is.found that the elements of the same filter can be used for

filtering as well as for the shaping of the main signal. This is use-

ful because the generation and reception take place at different ti es.

For the transition from one operating condition to the ovher it is suf-
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facient t carry out an additional invrsion at the output of the

first element and an additional inversion of the pickup from the last

clement. The corresponding voltages ?"J% and 4-' after such an inver-

sion are shown in Fig. 7.21 f, g, h, i, k and the connection scheme

for the elements in Fig. 7.22, b. It is readily seen that (t-'-t)

an(4)=p'(-)and 14(-( , which conf!nns the possibility of using

the elements of such a filter for transmission as well as reception.

§7.10. ON THE CONDITIONAL NATURE OF THE AMBIGUITY DIAGRAMS

The ambiguity diagrams which are examined in §7.1-7.9 were found

under condition that the lag time and distance reading is carried out

for the moment of time corresponding to beginning of the target sweep

by the main pulse. However, not only the target position at the mo-

-Ant of the sweep may be of interest but also its position during the

beginning of the sounding, the arrival of the reflected signal, the

formation of the peak of the compressed pulse or at any other moment
of time shifted any amount relativ6ly to any of the above-indicated

moments.

a

Fig. 7.22. Comection schemes for
four modified pseudorandom code el-
ements: a) operation as filter; b)
operating as main signal former.

4It is found that the ambiguity diagrams are mudified thereby even

if it is assumed that the target moves uniformly during the time in-

terval between bhe sweep and the distance reading. This attests to the

conditional nat&e of the ambiguity diagrams.
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Let us evaluate the possible modi- .

fications of the ambiguity diagrams due

. to the change in the moment of reading

the distance to the target.
'.-I Fig. 7.23 shows a diagram of uni-

Fig. 723.ExplanatiOn form target motion from the moment of

of the shifting of the tebni ft a
moment of distance read- the beginning of the sweep t = 0 to

ing. a) zond; b) pr. a certain moment t = o. Provisionally,

without observing the velocity scale,

the diagram of the propagation of the radar signal is plotted, begin-

ning with the moment of the start of the sounding 0 zond -r0 /c to the
moment of the beginning of the reception -r = r /c, where r0 is the

pr 00

distance to target at the moment of the sweep,

Expressing the distance r0 at the moment of the sweep t =0 by

zhe distance r0 at any arbitrary moment t = v' have

o= ,(.) !,'1
Multiplying the relation (1) by the factor 2/c and introducing I

the equivalent lag time tz,, corresponding to the distance to target

r,, we ,obtain -.. (2

"A'.,.- , (2)
We'shall regard the pair of values t and n as the expected

values of the measured quantities (instead of tz and Sd). Replacing in

(2) the expected values by the true values, we have

~J.(3)

The signal part of the correlation integral for the simultaneous

estination of the quantities tz and nd can be found without repeating

the entire analysis of §7.1-7.2 in the following manner. Designating

the new functional relationship z, (t',,CIA) in analogy to the old one, we
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obtain the expression for it by substituting the quantities t z and tzo

in the right part of the equation [(2)§7.2] by their values (2), (3)

0,4; O) V (o- t. .+

Designating t 4- I~O+% and (Ia=z.,+2F , we introduce the am-

biguity function of the pair of measured quantities tz. and Id' namely

Carrying out the substitution of the integration variable in

(4), we find for the introduced function the following expression:

* Comparing the new expression (6) with the expression found ear-

lier [(7) §7.2] for the ambiguity function ('rF) of the quantities

t and ad we have

,In particular,
WO,(O. o)-7-(oo). (8)

We divide termwise each of the parts of equation (7) by (8). Then

we obtain an expression analogous to (7) for the normalized ambiguity

function

Using the expression (9) we estimate the effect of the variation

of the moment of distance reading C on the shape of the ambiguity so-

lid.

Let the original ambiguity solid p(r, F) be the ambiguity solid

of a rectangular radio pulse with constant carrier (see Fig. 7.11). The

transformation (9) slopes the ambiguity solid (at .0 in the clock-
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7

wise direction).

The latter fact is easily explained by the following reasoning.

Let the true, b.t not accurately known Doppler frequency be QdO = 0

(case of innobile target). The ambiguity (Fig. 7.11) permits the as- L,
sumption ?A=2 +0 iF>O, which corresponds to -v,>0 . At such a

radial speed of the target the ambiguity section along T, correspond- -

ing to the ordinate F, is shifted within the time 0 to the side of the

greater lag time by -vO or In an analogous manner we find

that the section, corresponding to the ordinate F < 0, is displaced

towards the left.

Of interest is the fact that the previously sloped diagrams

p(,r, F) (Fig. 7.14) as a result of the additional sloping (9) can be

straightened in some cases.

Manu-
script [ Footnotes]
Page L
No.

209 See Appendix 3. ii
225 See also Appendix 2 and §7.10.

231 If we introduce 'i'(--) h , the coding operation in the con-

sidered example can be reduced to the use of the normal pro-

duct - (k>s) at the initial condition

The sequence then has the form
1 111--1-1.

[Transliterated .Symbols]

206 z = zapazdyvaniye = lag time

207 = d = dopplerovskaya = Doppler

217 OHT = opt =. optimal'nyy = optimum

219 = i = impults = pulse

227 maKC = maks maksimaltnyy = maximum
237-

7_7-7- -



lianu
scdript

-Noi

* 30 SHA zond =zondirovaniye =sounding

035 np pr =priyem =reception.
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Chapter 8

CONSECUTIVE REPEATED MEASUREMENTS

§8.1. SIMPLEST MODELS OF TARGET MOTION (MODELS WITH INDEPENDENT IN-

CREIENTS

In order to increase the measurement accuracy, the initial data

can be obtained repeatedly. The more readings are taken, the less is

normally the error scatter due to the influence of noise.

However, the measurement process always takes time, and during

this time the quantity to be measured can vary. This may result in an

additional error, which is usually termed dynamic error. In order to

de6rease this error, one must make use during the processing of the

readings of certain hypotheses concerning the law of variation in time

of the random quantity a = a(t) which can be measured, or else, one

must introduce a model of zarget motion. Optimixation of the.process-

ing then consists in ensuring the root mean square deviation of the

sulected motion model. Hence it is obvious that the choice, of the tar-

get motion model is of great importance for the optimization of the

processing.

We shall start out with the fact that the model, even though it is

very rough, should take into account the special features of the tar-

get maneuvers and at the sane time, withouv complicating the calcula-

tion, result in practically realizable solutions in terms of a cir-

cuit diagram. These requirements are satisfied by the statistical mo-

tion models with random and independent increments, on the basis ofl

which the further analysis will be constructed.
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Hence we shall introduce into the analysis the concept of incre-

ment of the true values of the measured quantity during the time be-

tween readings.

For a more concrete definition we shall assume that the distance

to target is measured with a certain repetition period T (for example,

T is equal to the scanning pericd of the station or, if the antenna is

always aimed at the target, the pulsing period).*

The first increment of the measured quantity a (distance) during

the time between readings we shall term the difference
~(1)

The first distance increment characterizes the radial speed of

motion of the target, averaged for the time between readings.

The second increment of the measured quantity a we shall term the

corresponding variation of the first increment

(2)

The second distance increment characterizes the acceleration of

the target.

Figure 8.1 shows a possible diagram of the measured quantity a

as a function of time for a maneuvering target. If the measurement is

effected extremely rarely (Fig. 3.1, a) the connection between the

discrete values of am is disturbed to such a degree that they can be

regarded as independent random qi,!.antities. Hence the results of the

previous readings cannot be used for improvement of the accuracy of the

current estimate, i.e., the repeated measurement procedure does not

give an accuracy advantage.

With more frequent measurements the scatter of the first incre-

mepits 6m decrease and the quantities am are no longer independent par-

&meters. In this case the results of the previous measurements can

be used for an improvement of the accuracy of the running estimate of
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a . However, when the measurements are not too frequent, the incre-am

ments 6 m vary from one reading to another in a random manner and they :?

can be considered to be independent random quantities, which simplifies

the analysis.

If the measurements are carried out often (Fig. 8.1, b) the con-

nection between the successive values of the first increments must al-

so be taken into account, i.e., the more or less smooth nature of the

change in the rate of motion must be taken into account. This means

that the 6 m are dependent quantities. At the same time, the second

increments 'm can still be considered to be independent random quanti-

ties. i

Finally, at very frequent measurements one could also consider

the gradual nature of the change of the acceleration, considering, for 4
example, the third and also the fourth increments of the measured qu-

antity as independent random quantities.

Models of motion with random
cc tr 0CMineednfrs

and independent first and second in-

t. :, t., tall the peculiarities of the motion

oe, "of a real target. Nonetheless they

,,, I permit a considerable improvement

*, asI of the results of processing for a

t- ;. maneuvering target as compared with

Fig. 8.1. Explanation of the a single measurement.

nature of the increments of n
the measured quantity a at n the processing of the re-
different recurrence fre-
quency of the readings. suts of observations on non-maneu-

vering ballistic targets, the equa-

tion of their trajectory (see, for example, [35]) is used to increase

the accuracy of numerous measurements as a model of motion.
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Figures 8.2 and 8.3 present diagrams which characterize the pos-

sible laws of change of the quantity am for a motion model with in-

dependent first and second ircrements (thick lines). The scatter and

mathematical expectation of the correspondipg increments are consider-

ed to be invariant with time which characterizes their stationary na-

ture. The mathematical expectations of the corresponding independent

increments in this case are considered to be zero.

L

Fig. 8.2. One of the possible realizations of motion models with in-
dependent and stationary first increments: a) plot of the variation
of the quantity a from one reading to the next; b) discrete values
of 6m of the first increments.

The motion model shown in Fig, 8.2 is convenient for very diverse

laws of motion of an intermittent nature, one of which is shown in

Fig. 8.2, a. The dotted lines in the same diagram shows the limits of

the region within which the possible motion diagrams are situated with

a probability of 0,8 on condition that the initial coordinate is a0,

that the initial speed is characterized by the magnitude of the first

increment, equal to zero, and that the scatter of the first increment

at all points D6m = 1. The increase in the scatter a with time charac-
- 2L1. -
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terizes the nonstationary nature of the discrete values of am (sta-

tionary are only the first increments 6.).

The second motion model (Fig. 8.3), in contrast to the first,

makes it possible to take into account the gradual nature of the change

of the coordinate a, connected with the more smooth change of the

first increments 6m (of the speed). The limits of the corresponding re-

gions for the same probability 0.8 in Fig. 8.3, a and b are indicated

by a dotted line (on the basis of the known initial coordinate aO, the

initial first increment 6NO0 , the initial second increment YoO=

and the scatter D'=)I

on . I.•

9o I

o- . . - ", '- - - i

r

Fig. 8.3. One of the possible realizations of the motion model with
independent and stationary second increments; a) curve of the variation
of the quantity a from one reading to the next; c) discrete values of
Tm of the second increment.

A certain deficiency of the model of Fig. 8.3 is the fact that

it does not take into account the limitation of the maximum rate of *.*.

motion, which is typical for real targets.
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§8.2. OPTIMUM SUCCESSIVE PROCESSING OF THE OBSERVATION RESULTS FOR

MOTIONS WITH INDEPENDENT FIRST INCREMENTS

Assuming that preexperimantal data on the measured quantity a

are lacking and that its first reading alotsch is obtained with a scat-

ter of Dlotsch. Assuming that the uncertainties are due only to the

presence of noise and that the signal energy considerably exceeds the

threshold value (see chapter 6), we consider the law of error distri-

bution normal and the systematic error as zero.

The law of the postexperimental probability distribution of the

measured parameter a1 then will be

" ! ] " O 0 T',)
p (, ,21 )-- -QT "- e

or with different symbols

2_-__,_ (2)

/r.D1

Here the subscript "1" of the letter p means that the probability den-

sity pl(al) is coDditional (the condition is the presence of one and

only one first reading); a* = alotsch is the optimum estimate; D1 =

= Dlotsch is the corresponding scatter (see 1.6).

Using the relation

j -- a i -{-' (3)

we can predict the value of a2 on the basis of the first reading.

We shall assume that 62 like a 1 has a normal distribution. Then,

a2 is also a normally distributed random quantity characterized by its

mathematical expectation and scatter. The mathematical expectation of

the quantity a2 we designated by a2 pr It is equal to the sum of

the mathematical expectations

M(a.) aO., M{' "} =0,

i.e. ,
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The dispersion of a we designate by2 pr cording to the

theorem on the scatter of the sum of independent quantities

D.= D,.+ Du, (5)

where D2=-D(O} is determined only by the law of the target motion.

The distribution of the quantities a2 predicted on the basis of

the results of the first reading satisfy the relation

p,( ...Ln (6)

In analogy with the expression (2) we can conclude that a pr is

the predicted estimate and D2 pr the scatter. It is readily seen that

the distribution (6) is preexperimental for. the following reading a2

Let then the second reading a2otsch arrive. Now we can introduce

the probability density of a under conditions of two readings

P3 (2) = P1 (22 1 as oTc.

In accordance with the previously kniown results of measurement

theory (§1.6) we can write

pA (4 4 .oTc):-- Kpa,%)p(a. Q (7)

Using the expression for normal distributions, we find after

taking of the logarithms .,

%a (2-:;pl + a:+cost. (8) -
2D, -- 2D, "lp l" 2D, ,,'

Making the coefficients of a and a, respectively, equal in the

left and right part of equation (8), we obtain

I 1 - 1 I

a2 UP- Ds xv a. o c., DZ GT

Using (4) and (5), we tind the final expressions for the optimum

escimate and scatter of the second reading
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Dg1 + OTC%(s7 
C

In an analogous manner we can find the expressions for the optimumn

estimate and scatter of the third and generally mth reading
D '

.* -,+ .-

_[ I , ID.+ (14)

Utilizing these expressions and introdtcing the results of the

readings, we cah consecutively find the distribution parameters for the

second, third, etc., measurements and thus determine also the corres-

ponding optimum estimates.

Every subsequent estimate (13) is composed of the estimate pre-

dicted on the basis of the preceding reading (am pr = am-,) and error
S*

signal m otsch- am-l) multiplied with the weight factor

{(15)

Thus, the 'results of the readings are introduced consecutively

and up to the moment of obtaining the mth estimate it is not nececsary

to store in the memory of the computer the resulus of all the preceding

estimates but it is sufficient to store the optimum estimate am_1 and

its scatter Dm_1 .

Let us pdint out that the abovedescribed processing seguence is

not the only possible one. One could, for example, obtain m estimatp

al, a2 , ... , aj at once. The estimates of the parameters from a1 to
then will, generally speaking, be more accurate than those obtain-

ed on the ba..s of a smaller number of readingso Kowever, the estimat2

Oni, as can b.p !hovrn , is exactly t.ie same as with the consecutive pro-

ceasing proc'edure. Because in radar the accurate determination of thu

preceding estimates is usually not of independent interest, it is be.:t
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Ni
to use consecutive processing.

§6. j. CONTINUOUS AND INTERRUPTED REGIMES OF CONSECUTIVE DROCESSING FOR

MOTIONS WITH INDEPENDENT AND STATIONARY FIRST INCREMENTS

In order to illustrate the realtions of §8.2 and to trace the

accumulation of information on the distance a, let us first consider

the simplest case in which D,=O for an arbitrary m. This case under

the condition A:{,)=O corresponds to an unchanged distance to the

target. __

By virtue of the relation [(14) §8.2] we then find

DOTC ,

The quantity entering into the right part of the equation we can

find from a relation, analogous to (1) in which m is replaced by (m - 1). ,

Repeating this procedure and taking into account that D.=oo (pre-

experimental data on the measured quantity a are lacking as stipulated)

we can find

The relation (2) corresponds to the wellknown situation in which

the scatter of the estimate is calculated on the basis of the knowm

scatter of observations with different accuracy. In particular, if the t

scatter of all readings is the same, the scatter of the mth estimate 4
is m times less than the scatter of each reading.

Further, we can obtain from the relations [(13) §8.2] that

* o. Dm ocn (3)

i.e., that the nth estimate is combined of the (m - l)th and the re-

sult of the rnth reading with weights which are inverse to the respect-

ive scatters. Using the formula (3) consecutively for the calculation
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o (ni- 1. --2,..., I) and taking into account (2), we obtain

rn

M In

L! Dn ac,

i.e., the estimate am the weighted average. lIt is composed of the

results of all the preceding readings with weights, which are inverse

to the scatters of these readings. If the scatters are equal, the

weighted average estimate is transformed into the arithmetic mean of

the results of the readings.

It is clear from the expression (2) that at D,=o the scatter

Dm of the estimate am decreases consecutively with an increase in the

number of readings. For examnple, at equal scatters of the readings

D4 OTcI DC we shall have - . It would seem that with a

sufficiently large number of measurements one could reduce the errors

as much as desired. This is really true for absolutely immobile tar-

gets. However, the usually existing position ambiguity expressed in

the fact that D,0o , limits the process of error minimization.

Let, for example, the scatter of all readings be the same D0=oo,

and the magnitude D6 be o .. Then. consecutively using formula

[(14) §8.21, we obtain:

Ds=--Doc*

7 i

D, =-" D0lt O ,3,7Doc%,

............. .... .. .. .. ... .. . . .

It is evident from the above-presented calculations that with op-

timum processing a stabilization of the error scatter takes place.

The stabilized value of the error scatter can be obtained from

248-,



Eq. [(14) §8.21 on the assumption for the case of periodic measure-

ments at a certain interval T, that .

Dm==D.=D,

Dm oTc,, =Do.,

Da= Da.

The equation for the scatter of the stabilized process has the
i

form

= + '' (5) i

or

D+ + DaD -- DADO -O,

hence we have for D > 0

D+2 + D +4D4D . (6) |.

In particular, for the above-considered example the stabilized

valiue is -

D---- DoTC,1 0,33Do.c,.

Simultaneously with the stabilization of the value of D theM
stabilization of the magnitude of the ratio Dm =Am, takes place,

DoN OTO-9

which characterizes the algorithm of the consecutive method of obtain-

ing estimates [(13) §8.2].

For the stabilized regime is valie

DA-D-. (7)

where D is determined from (6).

It follows from the relations [(13), (14) §8.2] and (7) that in

*the stationary regime any following estimate a* is obtained from the

preceding am- and the result of the last reading am otsch by the same

rule, regardless of the number of the observation:
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1= A (an -(8)

§8.4. REALIZATION OF THE OPTIMUM CONSECUTIVE PROCESSING FOR A STABLE

MOTION WITH STATIONARY FIRST INCREMENT

The circuit of the computer corresponding to the optimum proces-

sing rule [(8) §8.3] is represented in Fig. 8.4. The operations of

algebraic summation are carried out by the adders 1 and 2. The first

adder calculates the signal error on the basis of the result of the

;ast reading a otsch and the preceding estimate am_1 .

a a

.............................. 1 ra>

Fig. 8.4. Circuit schene of the de-
vice for the consecutive elaboration
of optimum estimates in the station-
ary regime with independent and zta-
tionary first increments of the mea-.
sured quantity a. a) otsch.

The estimate am is given by the second adder, whose input has,

been supplied with and the signal error, multiplied by the con-

stant weighting coefficient A. The preceding estimate is taken from the

delay line, connected with the output of the second summator.* The de-

lay in the line is assumed to be exactly equal to the repetition period

of the readings. The multiplication with the constant weighting coef-

ficient A can be carried out in a potentiometer, amplifier, etc., cir-

cuit.

The computer circuit scheme thus obtained contains two closed

circuits with feedback. One of these is outlined uy a dotted line and

is simply a recirculator circuit (see Fig. 5.16).
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In order to give another important interpretation of the proces-
in scheme derived above (Fig. 8.4) let us introduce the transmission

characteristics of the recirculat:)r from its input to the output of the

sunmator Kl(P) and from its input to the output of the delay line" ( )

This means that if the voltage e p t (in the operator form) arrives at

4.t

the recirculator input, the voltage K(p)et is taken off from the out-

put of the summator 2 and the voltage K2 (p)ePt from the output of the

de3ay line, Hence, taking into account the peculiarities of the sum-

ming operution and the delay in this circuit, we have

ePt +,K (p) elt=K (p) ep t,
eK(p) eP K. (p) ePSt

henc e

K2 (P)= K (p)e-r.o

If the process of fluctuation of the quantity a is fairly slow

(compared with the period T), then the discrete sequence of the values

am can be replaced by the function a(t) whose spectrum does not con-

tain frequencies greater than l/T.

In order to obtain an estimate of this function we assume

so that

I UK. (P)(3)

This means that the recirculator can be replaced by an integrator. Then

K, (p)= - (4)

applies, which corresponds to the voltage difference between the out-

put and input of the integrator.
In practice, instead of the difference am otsch - am-l' we can

introduce in the circuit scheme Fig. 8.4 quantity which is proportional
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to it, which correspondingly modifies A in this circuit. "The quantity

proportional to Is obtained, for example, by means

of a time discriminaotor in the form of a error signal voltage.

-,~ r - , , - -•

Thus, the scheme devised in Fig. 8.4 corresponds to the well-known

selftracking distance circuit with single error signal integration.

The scheme of Fig. 8.4 records only the measured coordinate (dis-

tance) and does not record the rate of its change. If in contrast to

the above assumptions the first increment has a finite mathematical

expectation, the error on account of not knowing the rate of motion is

transformed from a random to a systematic error. This error has been

given the special designation dynamic speed error. It is not present in

a circuit with two recirculators (integrators) which is the best for a

motion model with independent second increments.

§8.5. OPTIMUM CONSECUTIVE PROCESSING OF THE OBSERVATION RESULTS FOR A

MOTION WITH INDEPENDENT SECOND INCREMENTS

For the motion model with independent second increments there is

a connection not only between the measured quantities am and am- but

also for their first increments 6 and 6 Hence it is preferable to
m m-1*

store data on a as well as on 6.

Assuming that in the result of the reading (m - 1) a postexperi-

mental probability density Pa._,(Z_,, . . is obtained corresponding to

a two-dimensional normal distributional law:

-- i~4-1 m-l- P--s m-I Q --I
I

-- K,. 1) .1

Here D(,) and D. ,- are the scatter of the measured quar-

tities = and ,,, after the (m - l)th measurement; jf. is
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the correlation element connecting these quantities; _ and "'

- aru the mathematical expectations or, which is the same, the op-

timum estimates of tfhese quantities.

Using the distribution (1) and taking into account the regulari- "

ties of the motion and the result of the mth reading of am otsch' we I
can find the probability density p,(,, ) in analogy to §8.2, where

the distribution p.
1
_,(.) had been found on the baqis of the dis-

tribution P, ,

An intermediate stage is the prediction, i.e., the detec\,ion of

the ccnditional probability density PM-,(,. -I of the distribution of

the predicted values am and 6m by means of the data of the preceding

(m-1) readings.

We shall carry ou' the prediction in accordance with the relations

We take advantage of the wellknown expressions for the mathema-

tical expectations, scatters and correlation moments of the connectivi-

ty of the sums of random quantities:

' + + W} =A i {}+M} + A , (4)

Diu+u+w}=D{u}+D{v)+Diw}+

+2K{u. v}+2K, w}+2K n, w), (5)ii
K{u+v+w, r+s=K{u, i}+K{u, s}+

K it), r}+X (1, s}+({w, r}+ K{w. s). (5)

In particular, using expression (4), we take the mathematical

expectations from both parts of the Eqs. (2), (3).

We take into account that after the (m - l)th reading the mathe-

matical expectations of the quantities am-z and ., correspond to R

their estimates and . , those of am and 6m by the estima-

tes a and 6m pr' predicted on the basis of the previous reading,m pr
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and that the mathematic&l expectation of 'm has been stipulated to bem

zero.

We then obtain

(7)

Using (5) we find the scatter of both parts of Fqs. (2) and (3).

Taking into account the independence of the increments '7m from all

prec ding increments, and of course, from am, and , , we have

{"._o }={ m.., y-=O.

The scatter of the predicted values of am and 5m then will be

= ,.. .(m 1) + D&mI+js 2 i (0)

Finally, using (6), we find the correlation moment of connectivi-

ty K K{ : . . By virtue of the relations (2), (3), (6) and

the independence of the second increments, we obtain

Kmup=Km.-. + D 1 +Dm 1)'

The quantities am and 6m obviously have a normal distribution as

the sum of normally distributed quantities.

Hence the five parameters [expressions (7)-(11)1 found in analogy

to (1) determine the without ambiguity the distribution law of am and

6 after the prediction
m

pm.- (am, 0 mh-!

X exp ;2 + D,, ,-

-2Km 2 (1D* a pn') m ; (12))

This law we shall consider as preexperimental with respect to the

moment of the mtb reading.

After the reading has been obtained one can find the postexperi-
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mental distribution law of the same quantities

-= K p .- , ( ., & .)P€ (" 1 Q,. j 1M o M , ., ,) .

if, as in [(l) §8.2], it is assumed that the measurement errors 4

a. are caused only by noise* and that the law of their distribution is

normal with a mathematical expectation of zero (absence of systematic I

error), we obtain.;,

e 
If

Substituting (12) and (14) into (13) and using for ,,(,,,,)a .4,
notation analogous to (1) with the substitution of (m - 1) by m, we

find after taking of the logarithms,"i .

_ .o - . & -r.-.., -,..,- (i5)*

• -- -- 2 (DD j. - -

DZ.. P),(13)
- Km - u)8 .& m p) 0,- r OTC ') + Cons

By consecutively comparing the coefficients at a, 8., an, .,%.. and .
6 in the left and right part of Eq. (15), we obtain five equations

$m

which connect the parameters of the postexperimental distribution with

the arameters of the postexpercmental distribution bseeo'h the pari-

meters of the preexperimental (predicted distribution and the distri-
bution (14) of the reading errors:

__,____ I

Da.n,.,(

ubtttn~( a 4 aiZn) a
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Aftup, 1 (19)

K mnu Knp 11)8 '

Here is A. 6D~n - 1 A1ATfl DMD&M13._ K,,,

By multiplying the equations (16) and (17) and subtracting the

squared equation (18), we find the relation for Am

Using the value of Am thus determined, we find from (16)-(19) the

expressions for the parameters of the mth distribution of Do, DW,, Km

and ,t . If we introduce the coeffi6ients

A--D.. ' + D.

the sought-for expressions assume the sf.mnler form:

D.,,= A.Dm OTCqZ'

D&= 4Mn.- BmKn; lp,

Km= BmD;. oT.,

4,;Imup+ Am amQTCq 4 M 111)

8 m u p + 8vn ( a rt o TC 5 - m u p)

By substituting in the expressions thus obtained the parameters

(7)-(1), which characterize the results of the prediction, we express

the parameters of the mth distribution directly via the parameters of

the (m - 1)th distribution of the mth reading:

Dom.... + Dat-1 + 2Km.-.a + DIM
D.,,,..u + P,. 1) + 2K1. a+DIM+ Do* Q(2)

D_, + K. , + D ,

D ,,) + Djm._,) + 2K,- + DIM + DP oC. (1)

D• ,== Av,DmoTc-t (22)

PD &(,,._)+ P,j B,,, (K.., + D(,) + D7m,), (23)
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- Km BnD,,joTCq1 (24)

Q=.&, +8_, +A r( o c -), (25)

Using the abeve formulas (20)-(26) and introducing the results of

the readings (m = 1 , ... ), we can, as in the case considered in §8.2,

find consecutively the parameters of the distributions of th. measured

quantities, thus determining the corresponding optimu. estim tes. Any

subsequent estimate (25), (26) is composed of the estimate ( _-.

and a_ , respectively) predicted on the basis of the preceding read-

ing and the error signal ( amo~c--_-_ ), multiplied by the

corresponding weight factor Am or Bm. The error signal is calculatel ac

before as the difference of the reading am otsch and the predicted va-

lue of the measured quantity, which, in contrast to §8.2, is plotted

by taking into account the estimate of the first increment 6m_l (i.e.,

the speed estimate).

§8.6. 'UNSTEADY AND STEADY OPTIMUM L ISECUTIVE PROCESSING REGIME FOR A

MOTION WITH INDEPENDENT AND STATIONARY SECOND INCREMENTS

In order to illustrate the relations of §8.5 and to trace the i

accumulation of information on distance and speed, let us first consi-

der the simplest case, when D.-=Di=O W With periodic'target sweep

this corresponds to a target motion with a strictly constant, although

unknown speed. For the sake of simplification we asgume that the scat-

ter of all readings is the same and equal to DO.

Let us trace out the consecutive prczessing of the readings f ,

this case.

Assuming that up to the first reading information on a1 and 61

is la-cking, we assume al = a1 otsch and D1 = Do. In view of the fact

that one cannot give a speed estimate on the basis of the results of

a zinr le reading, we assume D,---*, X=0 • Substituting these 1ralues into
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[(20)-(26) §8.5] and assuming n = 2, we find A2 = B2 = 1 i.e,

D==D,. Du=2D0, K,=D,.

a2 " a OTC , 2 4 3OTCq - 0-'O

Assuming that m = 3, we obtain A2 -d B = i.e.,
2 3

D =-D.-, K, D=-,6 2o= iT i, - 2

or

3 -6 IZ OT'+ -'a OTP as oTcj,

II = T =-a

3
8; T (" oTo,-- ,t o,°).

For m = 4 we shall have :A,=-! B,= i.e.,

[,*,

scater D., D'= .,m. D

4~310 4O0C 13

or

3 2 1

a 4 To- a I ICO5F;"3OCC+ j-0t30CL+j-0a1OTC4

It can be seen that in proportion to the inout of new readings, the

scatters D cnand D6m are reduced.

The scatter D6m decreases particularly quickly, which is the case

in reality only if the motion if completely regular ( D=G ). The

optimum coefficients A= ° and B , by means of which

the new estimates are worked out, also vary fr6m one measurement to the

next in consequence of the improvements of the estimates.*
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The usually existiJ.*a ambiguity of the law of motion, consisting 4
in the fact that D,-40, limits the process of error reduction, also

results in the establishment of optimum values for the coefficients

AnII and Bm

If the optimum measurements are carried out periodically, and if'

D.,---. D const and D,(..Tc.=D.-cOns , the stable values are found

,,,= 4 B.

It follows f'rom the relations (2) that with the stable regime of'

optimum measurements any consecutbive estimates are obtained from the

preceding measurements ~ ~ and the result of' the last reading

am otsch by means of' the same rule independent of' the number of' the ob-

servati ~i:

+ (a & )OTC m -- a* 1 J

The circuit scheme of the computer corresponding to this proees-

sing rule is shown in Fig. 8.5.

A

a

0 
A3

Fig. 8.5. Circuit scheme of the l
device f'or obtaining consecutive
optimum estima tes in the smooth
regime in presence of independent
and stationary second increments
ofT the measured value a. a) otsch.
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, thi~s scheme the opPr~tios rif algebraic sumation are carried

out byt,4r*i adders 1 , ,, The first adder calculates the signal error

on the basis of the result of the lsredn Lochand ",he preced-

ing estimates and n- The calculated error signal isused

for, ,)btaingn the estimates a*and 6m

The estimate-a* is delivrered by the second adder, whose input is

supplied with the preceding estimateg -a- and and the-error

signal, multiplied by the constant weight coefficient. The preceding

estimate is taken from the output o*L- the delay line at -the timfe

T. The input of this line is ccnnected with the output of the second 2

adder. The estimate is supplied to the first adder for the cal-

culatioii of -the error signal.

The third addezr delivers the running estimate 6., and the preced-

ing estimate which is used in the first two adders is taken

,from the output of the delay line. For th~is purpose, the input of the

tidadder is supplied with the preceding estimate Z4 and the er-

ror signal from the first adder multiplied by the weight coefficient B.

equipped with feedback, two of which represent recirculator circuits.

Tjie recirculators, as pointed out previously in §8.4, are analog Jinteg-

nj 1.rs
Finially, let us analyza the stationarity conditions (1), (2) and

~i find the stable values D a D6, K, A and B as a function of Doand DT

omitting in [(20)-(241) §8.5) the subscripts rn'and (m - 1), we obtain for

the, five desired quantities five equations, ,hree of which are nonline-

ar. In order to facilitate the solution, we introduce the new variable

The equations [(2d) (24) +8+5canthe be transformed-thus:
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B(s-+I)D.=D6+K+D,, (6)
k.=-ADO, (7)

B (D -+ K + DI )-D79 (8)
K-- BD,.(9)

and B in (6) and (8) we express by Do, D7 and s:

S(0+ K -)

B D4(s+ _)

Then1q by virtue of (9) and (11), we have

K=T -I/D.D.(s+l). (12)

Further; by virtue of (10) and (12), we have .4!
,--=st fe D D. (s -r1) - DI . (13)

Finally, from the relations (7) and (5) follows i

(14)

Thus, the three unknown quantities D, D6 and K are expressed by

the 'iew unknown s. Substituting the values (12)-(14) thus obtained in

(4), we find the equation for s:

2+s. (1)s+11+s ?,) " (15)

Squaring the two parts of Eq. (15), we transform the equations for

s thus

fs)- (6 Z7 -K -

The function f(s) is monotonous and Eq. (16) can easily be solved

graphically. This enables us to find s for any relation r and toD,. .. ¢

calculate A. B, and

Let us stop to consider tbP caz6 oi small values of the relation
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. which is convenient for computation. At the same time this case

enables us to follow the increase in the accuzacy of the estimates and

its limitation by means of the final value of D . To a small relation

_2Di correspond small values of s, so that we can assume in (16)

(2+ss).%2 and (14-s) ! Then we obtain from (16) e or
4 D

Th/ la•(This approximation can be used if S< ).

A== D_ 4 rDT, (17)
•B----- /D°' ~Q

Dirf1(19)D
D~v4DD. 1- 4D.,VDD

Let us illustrate these relations by an example. Let D.= IO -.

and D, 10-1 ' 2 Then from the approximate relations (17)-(19) we

obtain s:,4. X A,1 ,B oo and Dp.04o. , i.e., the mean square

neasurement error in this case amounts to approximately 12 m at a mean

square error of a single reading of about 30 m.

Thus, consecutive processing enables the measurement error to be

greatly reduced as compared with the error of a single reading.

It should be pointed out that in the absence of constant acceler-

ations this reduction is limited by the random accelerations of the se-

condary emission center of the target. The latter can be displaced not

only in consequence of the noi.aniformity of the target motion but also

in consequence of the fluctuation effect.

The smaller DT, the greater is the possibility of increasing the

measurement accuracy during the process of repeated processing. However,

more time is then required for the establishment of the stationary re-
gime. Conversely, at D'>o , when S , the value D-Do i.e.,

the measurement accuracy, are not increased and the stationary regime

begins practically instantaneously.
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Tnir case corresponds to a very high degree of discreteness of

the readings. when the information on the target arrives rarely; Hence

it is evident that a reduction of the scatter ts impossible if the in-

fonracion on the target arrives too infrequently.

It is readily apparent that the scheme of Fig. 8.5. with two re-

circulators (integrators) was developed in consequence of the assumpt-

ion of a stationary second increment. The hypothesis of the stationary

first increment, as we have shown earlier, leads to a scheme 'ith a

single integrator.

Schemes with consecutive processing can be designed not only when

independent leadings of the measured coordinate are carried out but

also when a linear combination of a coordinate and its derivative is

read off. As has been shown in P7.7, this case is typical for a signal

which is frequency modulated in accordance with a linear law.

When consecutive measurements are carried out it is possible to

compensate for the distance measurement error (at the moment when the

sweep is carried out or at any other moment of time), connected with

the lack of information on the radial speed, because the processing _"

scheme contains information on distance as well as speed.

In the analysis in §8.5 we examined the case in which only the j.

readings of only one measured coordinate a were introduced into the pro-

cessing circuit. For the signals, discussed, for example, in §7.8 and

7.9, independent speed readings on the basis of the Doppler frequency

are also possible.

If the accuracy of these readings is not too low, it is feasible

to feed them into the processing circuit (Fig. 8.5) in combination with

the generated speed error signal ( 6 ,,loT,,--*"..- ). A case in which the .

single speed measurement is accurate but ambiguous, is then also pos-

s.ble (§7.8). If the processing circuit for the coordinate readings en-
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ables this ambiguity to be eliminated, the modified circuit will de-

liver accurate and unequivocal speed values which results in a decrease

in the error of the measurement of the coordinate a (distance).

Manu-
script [Footnotes]
Page
No.

235 Let us point c~t, however, that ]most of these relations re-
main valid alu° for other cases of periodical as well as
nonperiodicE& P,-o:asurements.

250 Instead of this line, a nonlinear time delay circuit can be
used.

255 In particular, we have in mind that the speed error of a
single reading (§7.7) is absent, i.e., that the rasult of
the reading depends only on % and not on

258 Let us point out that the variation in the optimum values of
the coefficients Am and Bm takes place not only during the

regime of estimate improvement but also during the reading
dropout when the scatter of the individual readings becomes
infinite.

Manu-
script [Transliterated Symbols]
Page
No.

244 OTC, = otsch = otschet = reading
'1

244 np= pr prognozirovannyy = predicted
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APPENDIX .

Appendix 1

QUALITATIVE DETECTION INDICES WITH SQUARE SIGNAL SUMMATION

Let the voltage at the output of the square-law adder be

u =u2+ U +. + u2,(

where U1 , U2 , ..., Ur are independent random quantities, distributed

in accordance with the generalized lawi of Rayleigh

22

p(Ug,)=Ug,,(qAU)e 2 O (2)

The mean square noise voitage in the relation (2) has been as-

sumed to be equal to unity. Let us now find, the distribution law of

the voltage U at the adder output. For this purpose we write first the

distribution law for a random quantity uj= 2

dUf

i.e.,

2

1 ~ 4 +nsA(~! p(,z,) = 3 " 2 .-q )e .( )

The characteristic of the distribution function (3) can be repre-

sented in"the form

O ,€s)- j' e"''p (i,) ., (p4)
( (4)

By replacing the modified Bessel function with its integral rep-

resentation [(9) §3.3] we obtain .1'
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4r. d e L / i Cos 2 s

Changing over to the new integration variables V;'cosO--x, and

'/jqsin = we find

e, ~ ~ )s . .dx X

2 2
00 I-)2s y qj ql

' S -2

or

2 e

0, (s) =e (5-)12
1- 2

The characteristic distribution function p(U) is found as the pro-

duct of the characteristic functions ei(s). Considering that the en-

ergy of all pulses is the same, we obtain

_ _(6)
OU Is) = 0, (S)= C-A C

u( s=t c(I - j2s)'M

where A=M - , or

( (S) e-A -dAM( 2  (7)

The desired distribution of the quantity U then is00
'.. (O) " U () - Xi s

P(U)-~ UsC~~d

or
A

AI a ' t- i-'d'

P (u) 2n A 00 1 - 1-2s ,,, . (18-)

In order to find the value of the ihtegral in relation (8) it is

sufficient to make the assumption M l, i.e., u-, . The probabi-

lity density p(U)=p(,) can then be calculated by means of fonmiula

(3). Noting that at M = 1- the quantity q,.7=fr , we find
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-J~d, (U --

Because (9) is valid for any U and A, it- I anbe substituted into

(8). Then we obtain

P(u)= e ,2,_ ,1, (V-Au) (u>Go (10)

In the differentiation of the modifird Bessel functions one can

consecutively use the following relation:

d

Then we obtain finally
M-1

-fUF  2"'A-, _(V,, )'  ll
P%(U)= Cn (U) = ( 2 (11

where - -

Formula (11) describes the distribution at the adder output in

presence of signal plus noise. The corresponding formula for the noise

alone can be obtained if in (11) we go over to the limit

at A -+ 0. in order to discover the ambiguity thus obtained., we make use

of the fact that

"l*x)-z for * O6..

Then we obtain '

1 c ~e2(U> O (12)

From the relations (11) and (12) we can derive expressions for
the correct detection and false alarm probabilities in the case of a

rectangular incoherent and non-fluctuating pulse packet.- "

2 l-I (jFU U (13)
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'-0

. UA-a c dU.

• I!J(14)

where U is the magnitude of the threshold, selected in accordanceporog

with the above-defined false alarm probability F.

The above found relation (12) makes it possible to estimate also

the qualitative detection indices in presence of independent fluctua-

tions of individual pulses in the packet. Because this case (see §3.6)

is equivalent to a single multifrequency emission with independent

41 fluctuations at different carrier frequencies, the qualitative indices

can be estimated also for this type of signal. Square summation (1) is

z;he optimum form of processing for any signal with independent fluctu-

ations (see §4.9) at an arbitrary ratio of the mean pulse energies and

the specxtral noise density.

It is then logical to conclude that in presence as well as absence

of a useful signal, tlhe amplitudes U i in formula (1) are distributed in
accordance with the Rayleigh law. Hence the distribution (12) for the

sum u= 70 can be used in both these cases. It is merely necessary

to remember that the quantity T. taken in (12) as equal to unity for

the case of the absence of a useful signal, increases in its presence

in accordace with the relation [(10) §6.3] i+ =i+-. times. Taking

this into account, we obtain

ps (.U)dU )) (15)

Thus, the probability D of correct detection of an M pulse packet

or M frequency signal with independent fluctuations with optimum pro-

(:essing (part of which is the square summation) will be

, . M-I e 2 dt.
Poe

-268-

_____ ___________________________________

4 . .



Integrating by parts, we find

2 (1 A-

D n°Pe NO!or(6

,Dic (26)

The false alarm probability F can be found from the same expres-

sion (16) by substituting into it a=o .

For example, at M = 2 and Uporog = 38 (in units V2 ) we have

- In order to secure a correct detection probability D = 0.9

we must have a ratio of the energy of a single pulse to the spectral
.

noise density of ,T 35  or the same ratio for the total energy of two
3IV,

pulses -A,70 (instead of the ratio LE in single-frequency op-
N,

eration).

A slightly less accurate result is obtained if the detection of

the packet or multifrequency signal is carried out without utilization

of optimum square summation. Let, for example, the presence of a sig-

rnal be assumed if even only one of M independently fluctuating pulses

exceeds the threshold. If D1 and F, are the probabilities of exceed-

ing of this threshold by any of these pulses (in presence or absence of

a useful signal, respectively), the probabilities of the threshold no-,

Mbeing exceeded by a single pulse will be (1 - D1 ) and (1 - F and

the probabilities of exceeding the threshold by even one pulse will be

i D= 1 - (1 -- DIM

and

In particular, at M = 2 for D = 0.9 and F = 1 we hava DO.U

and F,,0.5.4-7 , from which, using [(12) §6.3] we derive - .,5.

Compared with a single nonfluctuating signal, the fluctuation los-

ses at D = 0.9 and F = lO- 7 amount to: for a single-frequency fluctua-

ting signal (see Fig. 6.5) to about 8.5 db, for a two-frequency signal
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-to 5 d and b dbj respectively, forth sqaend bo -icu edfr

of non-optimum proc3ssing. For signal packets we must also take into

account the incoherent integration losses (§6.4).
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Appendix 2

QUALITATIVE INDICES OF THE OPTIMUM MEASURE4ENT OF

TWO PARAMETERS FOR A SIGNAL WITH RANDOM INITIAL PHASE

If two parameters a! and a2 , for example, the lag time and the

Doppler frequency, are measure simultaneously, the postexperimental

probability density ) in Eq. [(3) §6.5] is replaced by

p.. a). and the quantity Z will be z-z(A.. 2) . By carrying out the

analysis for a fairly strong signal, ;e can use the wellknown mathe-

mimical relation [(10) §6.5]. Because the distribution peak py(al, 2) I4

is then fairly narrow, we neglect the variation of the denominator

[(10) §6.5] within the limits of the peak. In contrast to §6.5 1'.- as-

sume that the preexperimental probability density is not necessarily

constant but has. a normal distribution with scatters dl, d the cor-

rulation moment k and the preexperimental mathematical expectations a1

and a2. Considering that the signal energy is independent of the me-

asured parameters, we obtain

Pa_("_' __ _=_CXp (1)Z (01.

d2 (MI -a)' + d,(as - a2)-2' - -a,)(as - a-I) "

2 dIa- k2)[

We use a Taylor expansion of the functions z'a, C:) in the neigh-

bourhood of the true value-, of the parameters a10 and a20 , which are -

unknown during the measurement, limiting the expansion to the second-

order infinitesimal terms:
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i(. d=) Z ( +. 4" ( Z -- a,) + Zka, - ii) +

a,. : ." . , . , ; (2 )
+Z" ii- Z (a + 2j~ + .(cDD 1

All derivatiVes here correspond to the point ao1 0 , a 2 0 "

The expression (1) is then transformed into the two-dimensi nal

normal distribution law

(' j"2(D2- K 3) (3)

We put together consecutively the coefficients at a , a 2 and a1

a2 in thie expressions (1) and (3)j using (2). Thus we obtain three e-

quationsi containing the uhkhown parameters Dl, D2 and K of the post-

experimental distribution. Multiplying the first of these equations by

the second and subtracting the third, we find the quantity DLD- a

after we obtain:

Di,=

Di, A

A,-4,-6 2 ' , (5)

D1 .. A 2

1 2

where

z#0 +(7)

2 d, (8)
NTi = Z--= +dd,- "{9

a I in (1) and (3), we can find the corresponding expressions for a and

2"*

We use the relations thus found for determining the scatter of

the measurement errors for the lag time and Doppler frequency. .?or this i-

purpose it is sufficient to put , a;=F. Z= .,-,F). aj=O and

=0 (see §7.1 and 7.2). 2
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As an example, let us calculate D,=D, and D,=Dp on condition

that d,=co. =O. '.=dp and that the emitted signal is a frequency modu- F -1

lated pulse with the deviation q > '. A at, and with nondegenerate

peak. In analogy with [(3) §7.7] we put in the neighbourhood of the

peak, i. e., for <<

sinr. (F.- + ) -. 10)
f f +(F + AI ).

Transforming (10), we obtain

Regarding (11) as a Taylor expansion, we have

Then, carrying out the calculation in accordance with the formulas

(7), (8) and (9), we obtain

where q. Hence, by virtue of (L) and (5)

3 L
DA + dF(12)

In this case the information on the speed as compared with the

preexperimental., has not been improved because d,=,oa in contrast to

dF. The smaller the product dr , and the greater Af, the less is the

scatter of the error in measuring the lag time D,,

.5;
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Appendix 3

ELEMENTS OF RESOLUTION THEORY

Let us assume the oscillation y(t), which may contain superposed

signals and noise,

yQt)--A, (If. a,,. a. ..... U,, .. ) + (1)

+A~x 3(t, .x .a . . ) + )+

Here, A1 and A2 are discrete random parameters, which can assume va-

lues of 0 or 1; aland a 2 i are random measurable parameters; Pli" P2i

* x. are random nonmeasureable parameters. If the presence of signal 1 does

not reduce the qualitative indices of detection or measurement of the

parameters of signal 2 to such a degree that they become inaccessible,

we say that the signal 2 is resolved out of signal 1, in the sense of

detection or in the sense of measurement, respectively. However, if

this is also true of signal 1 (in presence of signal 2) we can state

that the two signals are receiprocally resolved.

In this connection let us consider the detection of signal 2 in

presence of a nonrandom value A1 = 1. on the assumption that both signals

have independent Rayleigh amplitude coefficients, equally probable in-

itial phases and do not contain any other measureable or norneasureable

parameters. Then

- applies, where A2 (0 or 1) is a discrete quantity, which can be esti-

mated after reception of y(t). The solution 0 or 1 can be assumed

(see §2.7) on the basis of the probability
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PC, C1llyCl = :,°Q/04-l (3) ,

keeping in mind that the role of signal 1 consists in an increase in

the v.ctive noise. The subscripts at the probability den.ties in (3)

characterize the conditions for the presence of both signals and noise

n(t) or the signal x-v. Pi. BD) only and this noise. Because with the

first of these conditions A2 = 1,

Pet es. a ~ LY() B P ly q (1 X .I P ) ."co 17
From (3) and (4) we can obtain

CO 2Z yL-x(.~ )
1IV'W] CdB I, lfy ())1 [Y (1 2 0 L)(';. (5)

Here :.j(:} is the probability relation, corresponding to the case A

of detection of the first signal xis, .. B,) with the random amplitude

B1 and the initial phase pl against the background of the noise n(t),

. (6)

.... .. , corresponds to a substitution of y(t) by y-x 1(.lB

in the numerator and denominator of (6);

i " the probability relation corresponding to the detection

of the second signal x,(t, . ii with the fixed parameters p, B against

the background of zhe noise n(t), .

Pfy()--QX, . (7)

The expression z2.lZ,: is found by means of the formula [(8) §3.4]

If the quantity ._*t in this formula is e.pressed via the complex

"iamplitudes [(3) P-.7], the substitution I =zz is carried out,. and

the product of the integrals thus obtained is represented in the form

of a double integral, we obtain
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&3 a+N . o , -- +N.) x
L

xS ( Y (S)X)Xds)d ds (8)

Then

Jy(1) jl'' ) 4 lV*(
', ~ ~ ~ ~ I ...M . r BI i .0 exp .v ,,+,7 I 0

i -- B~ ~~X, (1) e, j [y, (S)--B ' s -D ~ (1) X. (s) dids -

~EEY (t) Y. () X; (1()t

* -40

It follows from the relations §3.1 that

1/=fxP [, xydI+ yxadt =ffi

i, (xp -[ 2(Y-A'd- 32dit.

where
'3X('P4 '= f H 2 1 11

Changing* over to the complex form of notation, we obtain

1' E[V t)i exp -- 00, [ t-BX2(Oe1 Z1t)-

X f),-~ di

As a result, the relation (5) is transformed into

Go' 2 .. 28Z Cos (3- 0)

-- j dB JB 't. N. e tN.

o o

or in analogy to [(8) §3.41 r

2

N -N ;TV*N (1
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Here Z ekV characterizes the optimum signal processing;

'2
Z,.K.-+I" Y/(t)2*(t)dtI. (10) ,.,,

and

.9,,,.,="---  A (i)R'2udt= " " . 3 ({)X;(tid t •  ll

where in turn

CO

~ 3 (J)- .9,4!'(;+ 5 x22 X(s)X;(s)ds.(12)

Thus, the pt.'.mm rprocessing operation is carried out in accordancet

with formula (10), where the function R(t) generally does noc coincide

with X2 (t). The equality R(t) = X2 (t) applies only in the case when the

signals Xl(t) and X2 (t) are orthogonal, i.e., when the integral St

cc

vanishes. The ratio of the modulus of this integral to the square root

of the products of the integrals of the squares of the moduli Xl(t)

and X2 (t) is termed the correlation coefficient of these signals 4
S ~(s) el (s) dso-- -03 .('3

if the signals Xl(t) and X2 (t) differ only by telgtm n opeiA'1 (s)I. ds JX. (S)[2d,

difer nlybythe lag time and Doppler

frequency, the deiinition (13) gives the relations of §7.2.

Having carried out the analysis of the qualitative detection in.-

dices during processing in accordance with the relation (10), we can
I\

show that the detection is qualitatively determined by the energy

E2ekv. In other words, only the part of the energy E2 determined by

the magnitude of the relation
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is effectively utilized. The smaller rho, the greater is znis propor-

tion, i.e., the better are, the signals resolved. At equal

it is possible to obtain equal probabilities D and F in absence as

well as in presence of a signal x,(t. At. usm, in which only the amplitude

and the initial phase are random.

It is found that analogous concepts can be developed also for the

spatial resolution which is carried out, for example, when the signals

are received at a certain linear aperture -112.x<I/2. . Depending on

the position of the emitters in space, a certain field distribution is

created in the section 1. Superposed on this field is the field of the

thermal noise with the spectral density N., which we shall consider as

sitotropic. Information on the presence of the emitter 2 in the pre-

sence of a fluctuating emitter 1 (and vice versa) can be obtained by

analysis of the voltage of the field as a function of the two varia-

bles Y(t, x). As the calculations analogous to those described above,

show, this analysis consists in taking the integral

Zas'+ fdx Y (I. x),R(Y.x) di. (15)

Additional integration, over x at the aperture I can be carried

out in practice by means of a multielement antenna or an antenna with

a single output with an equivalent directivity pattern. The minimum

of the latter at optimum resolution of the source of the oscillations

2 should be directed at the source of the oscillations 1[30].
/I
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Manu-
script[Transliterated Symbols]

Page
No.

267 liopor = porog =porog = threshold

268 3- =E = energiye = energy

276 3fCB Ekv =ekivalentnyy =equivalent
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